基于行人航位推算的室内位置指纹自动更新

Daisuke Taniuchi, T. Maekawa
{"title":"基于行人航位推算的室内位置指纹自动更新","authors":"Daisuke Taniuchi, T. Maekawa","doi":"10.1145/2667226","DOIUrl":null,"url":null,"abstract":"In this article, we propose a new method for automatically updating a Wi-Fi indoor positioning model on a cloud server by employing uploaded sensor data obtained from the smartphone sensors of a specific user who spends a lot of time in a given environment (e.g., a worker in the environment). In this work, we attempt to track the user with pedestrian dead reckoning techniques, and at the same time we obtain Wi-Fi scan data from a mobile device possessed by the user. With the scan data and the estimated coordinates uploaded to a cloud server, we can automatically create a pair consisting of a scan and its corresponding indoor coordinates during the user's daily life and update an indoor positioning model on the server by using the information. With this approach, we try to cope with the instability of Wi-Fi-based positioning methods caused by changing environmental dynamics, that is, layout changes and moving or removal of Wi-Fi access points. Therefore, ordinary users (e.g., customers) who do not have rich sensors can benefit from the continually updating positioning model.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Automatic Update of Indoor Location Fingerprints with Pedestrian Dead Reckoning\",\"authors\":\"Daisuke Taniuchi, T. Maekawa\",\"doi\":\"10.1145/2667226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a new method for automatically updating a Wi-Fi indoor positioning model on a cloud server by employing uploaded sensor data obtained from the smartphone sensors of a specific user who spends a lot of time in a given environment (e.g., a worker in the environment). In this work, we attempt to track the user with pedestrian dead reckoning techniques, and at the same time we obtain Wi-Fi scan data from a mobile device possessed by the user. With the scan data and the estimated coordinates uploaded to a cloud server, we can automatically create a pair consisting of a scan and its corresponding indoor coordinates during the user's daily life and update an indoor positioning model on the server by using the information. With this approach, we try to cope with the instability of Wi-Fi-based positioning methods caused by changing environmental dynamics, that is, layout changes and moving or removal of Wi-Fi access points. Therefore, ordinary users (e.g., customers) who do not have rich sensors can benefit from the continually updating positioning model.\",\"PeriodicalId\":183677,\"journal\":{\"name\":\"ACM Trans. Embed. Comput. Syst.\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Embed. Comput. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2667226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2667226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们提出了一种在云服务器上自动更新Wi-Fi室内定位模型的新方法,该方法使用从特定用户(例如,环境中的工作人员)在给定环境中花费大量时间的智能手机传感器获取的上传传感器数据。在这项工作中,我们尝试使用行人航位推算技术来跟踪用户,同时我们从用户拥有的移动设备获得Wi-Fi扫描数据。将扫描数据和估计坐标上传到云服务器,我们可以在用户的日常生活中自动创建一个由扫描和对应的室内坐标组成的pair,并利用这些信息在服务器上更新一个室内定位模型。通过这种方法,我们试图应对由于环境动态变化,即布局变化和移动或移除Wi-Fi接入点而导致的基于Wi-Fi定位方法的不稳定性。因此,没有丰富传感器的普通用户(如客户)可以从不断更新的定位模型中受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Update of Indoor Location Fingerprints with Pedestrian Dead Reckoning
In this article, we propose a new method for automatically updating a Wi-Fi indoor positioning model on a cloud server by employing uploaded sensor data obtained from the smartphone sensors of a specific user who spends a lot of time in a given environment (e.g., a worker in the environment). In this work, we attempt to track the user with pedestrian dead reckoning techniques, and at the same time we obtain Wi-Fi scan data from a mobile device possessed by the user. With the scan data and the estimated coordinates uploaded to a cloud server, we can automatically create a pair consisting of a scan and its corresponding indoor coordinates during the user's daily life and update an indoor positioning model on the server by using the information. With this approach, we try to cope with the instability of Wi-Fi-based positioning methods caused by changing environmental dynamics, that is, layout changes and moving or removal of Wi-Fi access points. Therefore, ordinary users (e.g., customers) who do not have rich sensors can benefit from the continually updating positioning model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信