基于潜在表示的物联网恶意软件检测

C. N. Van, V. Phan, Cao Van Loi, Khanh Duy Tung Nguyen
{"title":"基于潜在表示的物联网恶意软件检测","authors":"C. N. Van, V. Phan, Cao Van Loi, Khanh Duy Tung Nguyen","doi":"10.1109/KSE50997.2020.9287373","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach for IoT malware detection system based on the analysis of IoT network traffic features. First, we use an autoencoder network to gather latent presentation of the input data. This is followed by a classifier to identify whether an IoT network traffic is malware or benign. We carry out a comprehensive comparison of different input feature sets and figure out that using latent representation is more effective than the original features. This proves that autoencoder network can compress the IoT network traffic features and keep only the most meaningful features. The model latent representation and classifies IoT malware and benign with high performance. Another finding is that our trained model can detect new types of abnormal IoT network traffics which do not appear in the training process.","PeriodicalId":275683,"journal":{"name":"2020 12th International Conference on Knowledge and Systems Engineering (KSE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoT Malware Detection based on Latent Representation\",\"authors\":\"C. N. Van, V. Phan, Cao Van Loi, Khanh Duy Tung Nguyen\",\"doi\":\"10.1109/KSE50997.2020.9287373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach for IoT malware detection system based on the analysis of IoT network traffic features. First, we use an autoencoder network to gather latent presentation of the input data. This is followed by a classifier to identify whether an IoT network traffic is malware or benign. We carry out a comprehensive comparison of different input feature sets and figure out that using latent representation is more effective than the original features. This proves that autoencoder network can compress the IoT network traffic features and keep only the most meaningful features. The model latent representation and classifies IoT malware and benign with high performance. Another finding is that our trained model can detect new types of abnormal IoT network traffics which do not appear in the training process.\",\"PeriodicalId\":275683,\"journal\":{\"name\":\"2020 12th International Conference on Knowledge and Systems Engineering (KSE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 12th International Conference on Knowledge and Systems Engineering (KSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE50997.2020.9287373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 12th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE50997.2020.9287373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在分析物联网网络流量特征的基础上,提出了一种物联网恶意软件检测系统的新方法。首先,我们使用自编码器网络来收集输入数据的潜在表示。接下来是一个分类器来识别物联网网络流量是恶意软件还是良性的。我们对不同的输入特征集进行了全面的比较,发现使用潜在表征比使用原始特征更有效。这证明了自编码器网络可以压缩物联网网络的流量特征,只保留最有意义的特征。该模型对物联网恶意软件和良性软件进行了高性能的潜在表示和分类。另一个发现是,我们训练的模型可以检测到在训练过程中没有出现的新型异常物联网网络流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IoT Malware Detection based on Latent Representation
This paper proposes a new approach for IoT malware detection system based on the analysis of IoT network traffic features. First, we use an autoencoder network to gather latent presentation of the input data. This is followed by a classifier to identify whether an IoT network traffic is malware or benign. We carry out a comprehensive comparison of different input feature sets and figure out that using latent representation is more effective than the original features. This proves that autoencoder network can compress the IoT network traffic features and keep only the most meaningful features. The model latent representation and classifies IoT malware and benign with high performance. Another finding is that our trained model can detect new types of abnormal IoT network traffics which do not appear in the training process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信