土壤干湿:从数据到可理解的预测模型

Aniruddha Basak, O. Mengshoel, K. Schmidt, Chinmay Kulkarni
{"title":"土壤干湿:从数据到可理解的预测模型","authors":"Aniruddha Basak, O. Mengshoel, K. Schmidt, Chinmay Kulkarni","doi":"10.1109/DSAA.2018.00041","DOIUrl":null,"url":null,"abstract":"Soil moisture is critical to agriculture, ecology, and certain natural disasters. Existing soil moisture models often fail to predict soil moisture accurately for time periods greater than a few hours. To tackle this problem, we introduce in this paper two novel models, the Naive Accumulative Representation (NAR) and the Additive Exponential Accumulative Representation (AEAR). The parameters in these models reflect hydrological redistribution processes of gravity and suction. We validate our models using soil moisture and rainfall time series data collected from a steep gradient post-wildfire site in Southern California. Data analysis is challenging, since rapid landscape change in steep, burned hillslopes is typically observed in response to even small to moderate rain events. We found that the AEAR model fits the data well for three distinct soil textures at different depths below the ground surface (at 5cm, 15cm, and 30cm). Similar strong results are demonstrated in controlled soil moisture experiments. Our recommended AEAR model has been validated as effective and useful by earth scientists, giving better forecasts than existing models for time horizons of 10 to 24 hours.","PeriodicalId":208455,"journal":{"name":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wetting and Drying of Soil: From Data to Understandable Models for Prediction\",\"authors\":\"Aniruddha Basak, O. Mengshoel, K. Schmidt, Chinmay Kulkarni\",\"doi\":\"10.1109/DSAA.2018.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil moisture is critical to agriculture, ecology, and certain natural disasters. Existing soil moisture models often fail to predict soil moisture accurately for time periods greater than a few hours. To tackle this problem, we introduce in this paper two novel models, the Naive Accumulative Representation (NAR) and the Additive Exponential Accumulative Representation (AEAR). The parameters in these models reflect hydrological redistribution processes of gravity and suction. We validate our models using soil moisture and rainfall time series data collected from a steep gradient post-wildfire site in Southern California. Data analysis is challenging, since rapid landscape change in steep, burned hillslopes is typically observed in response to even small to moderate rain events. We found that the AEAR model fits the data well for three distinct soil textures at different depths below the ground surface (at 5cm, 15cm, and 30cm). Similar strong results are demonstrated in controlled soil moisture experiments. Our recommended AEAR model has been validated as effective and useful by earth scientists, giving better forecasts than existing models for time horizons of 10 to 24 hours.\",\"PeriodicalId\":208455,\"journal\":{\"name\":\"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA.2018.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2018.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

土壤水分对农业、生态和某些自然灾害至关重要。现有的土壤湿度模型往往不能准确预测超过几个小时的土壤湿度。为了解决这一问题,本文引入了朴素累计表示(NAR)和可加指数累计表示(AEAR)两种新的模型。这些模型中的参数反映了重力和吸力的水文再分配过程。我们使用从南加州一个陡峭的山火后地点收集的土壤湿度和降雨时间序列数据来验证我们的模型。数据分析是具有挑战性的,因为在陡峭的、被烧毁的山坡上,即使是小到中等降雨事件,通常也会观察到快速的景观变化。我们发现AEAR模型可以很好地拟合地表以下不同深度(5cm、15cm和30cm)的三种不同土壤质地的数据。在土壤湿度控制试验中也得到了类似的结果。我们推荐的AEAR模型已经被地球科学家证实是有效和有用的,在10到24小时的时间范围内,它比现有的模型给出了更好的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wetting and Drying of Soil: From Data to Understandable Models for Prediction
Soil moisture is critical to agriculture, ecology, and certain natural disasters. Existing soil moisture models often fail to predict soil moisture accurately for time periods greater than a few hours. To tackle this problem, we introduce in this paper two novel models, the Naive Accumulative Representation (NAR) and the Additive Exponential Accumulative Representation (AEAR). The parameters in these models reflect hydrological redistribution processes of gravity and suction. We validate our models using soil moisture and rainfall time series data collected from a steep gradient post-wildfire site in Southern California. Data analysis is challenging, since rapid landscape change in steep, burned hillslopes is typically observed in response to even small to moderate rain events. We found that the AEAR model fits the data well for three distinct soil textures at different depths below the ground surface (at 5cm, 15cm, and 30cm). Similar strong results are demonstrated in controlled soil moisture experiments. Our recommended AEAR model has been validated as effective and useful by earth scientists, giving better forecasts than existing models for time horizons of 10 to 24 hours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信