基于双向卷积lstm的大气污染物指数分析与预测

Georgios Karampelas, D. Sotiropoulos
{"title":"基于双向卷积lstm的大气污染物指数分析与预测","authors":"Georgios Karampelas, D. Sotiropoulos","doi":"10.1109/IISA56318.2022.9904392","DOIUrl":null,"url":null,"abstract":"Air pollution is a crucial issue that affects people’s health and simultaneously the planet’s future. Forecasting is a key role for preventing and preparing the public to combat it. Meteorological forecasting is a key approach to the problem that uses numerous practices. Some of the most well-known are Regressions analysis and Neural Networks. Both use historical datasets in order to determine forthcoming pollution levels. For Neural Networks the LSTMs, Conv1D and Transformers are some of the best tools to tackle such important issues. This paper presents an alternative solution for time series prediction for air pollution using a BiLSTM-Conv1D neural network which rivals other models on their performance.","PeriodicalId":217519,"journal":{"name":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Prediction of Air Pollutant Indices using Bidirectional-Convolutional LSTMs\",\"authors\":\"Georgios Karampelas, D. Sotiropoulos\",\"doi\":\"10.1109/IISA56318.2022.9904392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air pollution is a crucial issue that affects people’s health and simultaneously the planet’s future. Forecasting is a key role for preventing and preparing the public to combat it. Meteorological forecasting is a key approach to the problem that uses numerous practices. Some of the most well-known are Regressions analysis and Neural Networks. Both use historical datasets in order to determine forthcoming pollution levels. For Neural Networks the LSTMs, Conv1D and Transformers are some of the best tools to tackle such important issues. This paper presents an alternative solution for time series prediction for air pollution using a BiLSTM-Conv1D neural network which rivals other models on their performance.\",\"PeriodicalId\":217519,\"journal\":{\"name\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA56318.2022.9904392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA56318.2022.9904392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空气污染是影响人类健康和地球未来的关键问题。预报是预防和使公众做好准备抗击疟疾的关键作用。气象预报是解决这一问题的关键方法,需要大量实践。其中最著名的是回归分析和神经网络。两者都使用历史数据集来确定即将到来的污染水平。对于神经网络来说,lstm、Conv1D和transformer是解决这些重要问题的最佳工具。本文提出了一种使用BiLSTM-Conv1D神经网络进行空气污染时间序列预测的替代解决方案,该网络在性能上与其他模型相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Prediction of Air Pollutant Indices using Bidirectional-Convolutional LSTMs
Air pollution is a crucial issue that affects people’s health and simultaneously the planet’s future. Forecasting is a key role for preventing and preparing the public to combat it. Meteorological forecasting is a key approach to the problem that uses numerous practices. Some of the most well-known are Regressions analysis and Neural Networks. Both use historical datasets in order to determine forthcoming pollution levels. For Neural Networks the LSTMs, Conv1D and Transformers are some of the best tools to tackle such important issues. This paper presents an alternative solution for time series prediction for air pollution using a BiLSTM-Conv1D neural network which rivals other models on their performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信