Charles A. Lynch, Ajibayo O. Adeyeye, M. Tentzeris
{"title":"用于数字孪生和超宇宙温度传感应用的自识别和可定位mmID的“智能”封装","authors":"Charles A. Lynch, Ajibayo O. Adeyeye, M. Tentzeris","doi":"10.1109/ectc51906.2022.00023","DOIUrl":null,"url":null,"abstract":"With the increasing demand for scalable and high performing wireless devices for Digital Twinning applications in industrial systems and in the Metaverse, there is likewise increasing demand to explore means of \"Smart\" packaging enabled devices. In this effort, the authors report a minimalistic, ultra-lowcost mmID module operating in the 60 GHz with a resistive-based temperature sensor for localized sensing applications. The presented system is capable of simultaneously sensing the local temperature of the self-identifying mmID while maintaining a ranging accuracy of 5.35 mm. In addition, simultaneous multi-tag interrogation capability is demonstrated through the \"Smart\" packaging of the mmID enabled through Frequency Division Multiplexing. Thus, the system features a framework for future Digital Twinning and Metaverse applications that utilize multiple self-identifying mmID's for localized sensing.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"\\\"Smart\\\" Packaging of Self-Identifying and Localizable mmID for Digital Twinning and Metaverse Temperature Sensing Applications\",\"authors\":\"Charles A. Lynch, Ajibayo O. Adeyeye, M. Tentzeris\",\"doi\":\"10.1109/ectc51906.2022.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing demand for scalable and high performing wireless devices for Digital Twinning applications in industrial systems and in the Metaverse, there is likewise increasing demand to explore means of \\\"Smart\\\" packaging enabled devices. In this effort, the authors report a minimalistic, ultra-lowcost mmID module operating in the 60 GHz with a resistive-based temperature sensor for localized sensing applications. The presented system is capable of simultaneously sensing the local temperature of the self-identifying mmID while maintaining a ranging accuracy of 5.35 mm. In addition, simultaneous multi-tag interrogation capability is demonstrated through the \\\"Smart\\\" packaging of the mmID enabled through Frequency Division Multiplexing. Thus, the system features a framework for future Digital Twinning and Metaverse applications that utilize multiple self-identifying mmID's for localized sensing.\",\"PeriodicalId\":139520,\"journal\":{\"name\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ectc51906.2022.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
"Smart" Packaging of Self-Identifying and Localizable mmID for Digital Twinning and Metaverse Temperature Sensing Applications
With the increasing demand for scalable and high performing wireless devices for Digital Twinning applications in industrial systems and in the Metaverse, there is likewise increasing demand to explore means of "Smart" packaging enabled devices. In this effort, the authors report a minimalistic, ultra-lowcost mmID module operating in the 60 GHz with a resistive-based temperature sensor for localized sensing applications. The presented system is capable of simultaneously sensing the local temperature of the self-identifying mmID while maintaining a ranging accuracy of 5.35 mm. In addition, simultaneous multi-tag interrogation capability is demonstrated through the "Smart" packaging of the mmID enabled through Frequency Division Multiplexing. Thus, the system features a framework for future Digital Twinning and Metaverse applications that utilize multiple self-identifying mmID's for localized sensing.