ZEST:一种预测专车服务乘客需求的混合模型

Hua Wei, Yuandong Wang, Tianyu Wo, Yaxiao Liu, Jie Xu
{"title":"ZEST:一种预测专车服务乘客需求的混合模型","authors":"Hua Wei, Yuandong Wang, Tianyu Wo, Yaxiao Liu, Jie Xu","doi":"10.1145/2983323.2983667","DOIUrl":null,"url":null,"abstract":"Chauffeured car service based on mobile applications like Uber or Didi suffers from supply-demand disequilibrium, which can be alleviated by proper prediction on the distribution of passenger demand. In this paper, we propose a Zero-Grid Ensemble Spatio Temporal model (ZEST) to predict passenger demand with four predictors: a temporal predictor and a spatial predictor to model the influences of local and spatial factors separately, an ensemble predictor to combine the results of former two predictors comprehensively and a Zero-Grid predictor to predict zero demand areas specifically since any cruising within these areas costs extra waste on energy and time of driver. We demonstrate the performance of ZEST on actual operational data from ride-hailing applications with more than 6 million order records and 500 million GPS points. Experimental results indicate our model outperforms 5 other baseline models by over 10% both in MAE and sMAPE on the three-month datasets.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"ZEST: A Hybrid Model on Predicting Passenger Demand for Chauffeured Car Service\",\"authors\":\"Hua Wei, Yuandong Wang, Tianyu Wo, Yaxiao Liu, Jie Xu\",\"doi\":\"10.1145/2983323.2983667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chauffeured car service based on mobile applications like Uber or Didi suffers from supply-demand disequilibrium, which can be alleviated by proper prediction on the distribution of passenger demand. In this paper, we propose a Zero-Grid Ensemble Spatio Temporal model (ZEST) to predict passenger demand with four predictors: a temporal predictor and a spatial predictor to model the influences of local and spatial factors separately, an ensemble predictor to combine the results of former two predictors comprehensively and a Zero-Grid predictor to predict zero demand areas specifically since any cruising within these areas costs extra waste on energy and time of driver. We demonstrate the performance of ZEST on actual operational data from ride-hailing applications with more than 6 million order records and 500 million GPS points. Experimental results indicate our model outperforms 5 other baseline models by over 10% both in MAE and sMAPE on the three-month datasets.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

基于优步或滴滴等移动应用的专车服务存在供需不均衡的问题,通过对乘客需求分布的合理预测可以缓解这一问题。在本文中,我们提出了一个零网格集成时空模型(zero - grid Ensemble Spatio Temporal model, ZEST)来预测乘客需求,该模型包含四个预测因子:时间预测因子和空间预测因子,分别对局部因素和空间因素的影响进行建模;集成预测因子将前两个预测因子的结果综合起来;零网格预测因子专门预测零需求区域,因为在这些区域内任何巡航都会浪费驾驶员的能量和时间。我们在超过600万个订单记录和5亿个GPS点的网约车应用的实际运营数据上展示了ZEST的性能。实验结果表明,在三个月的数据集上,我们的模型在MAE和sMAPE上都比其他5个基线模型高出10%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZEST: A Hybrid Model on Predicting Passenger Demand for Chauffeured Car Service
Chauffeured car service based on mobile applications like Uber or Didi suffers from supply-demand disequilibrium, which can be alleviated by proper prediction on the distribution of passenger demand. In this paper, we propose a Zero-Grid Ensemble Spatio Temporal model (ZEST) to predict passenger demand with four predictors: a temporal predictor and a spatial predictor to model the influences of local and spatial factors separately, an ensemble predictor to combine the results of former two predictors comprehensively and a Zero-Grid predictor to predict zero demand areas specifically since any cruising within these areas costs extra waste on energy and time of driver. We demonstrate the performance of ZEST on actual operational data from ride-hailing applications with more than 6 million order records and 500 million GPS points. Experimental results indicate our model outperforms 5 other baseline models by over 10% both in MAE and sMAPE on the three-month datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信