基于指数分布的混合截尾样本截尾单元失效时间预测

A. Asgharzadeh, R. Valiollahi
{"title":"基于指数分布的混合截尾样本截尾单元失效时间预测","authors":"A. Asgharzadeh, R. Valiollahi","doi":"10.18869/ACADPUB.JSRI.9.1.11","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper, we discuss different predictors of times to failure of units censored in a hybrid censored sample from exponential distribution. Bayesian and non-Bayesian point predictors for the times to failure of units are obtained. Non-Bayesian prediction intervals are obtained based on pivotal and highest conditional density methods. Bayesian prediction intervals are also proposed. One real data set has been analyzed to illustrate all the prediction methods. Finally, different prediction methods have been compared using Monte Carlo simulations.","PeriodicalId":422124,"journal":{"name":"Journal of Statistical Research of Iran","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prediction of Times to Failure of Censored Units in Hybrid Censored Samples from Exponential Distribution\",\"authors\":\"A. Asgharzadeh, R. Valiollahi\",\"doi\":\"10.18869/ACADPUB.JSRI.9.1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this paper, we discuss different predictors of times to failure of units censored in a hybrid censored sample from exponential distribution. Bayesian and non-Bayesian point predictors for the times to failure of units are obtained. Non-Bayesian prediction intervals are obtained based on pivotal and highest conditional density methods. Bayesian prediction intervals are also proposed. One real data set has been analyzed to illustrate all the prediction methods. Finally, different prediction methods have been compared using Monte Carlo simulations.\",\"PeriodicalId\":422124,\"journal\":{\"name\":\"Journal of Statistical Research of Iran\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Research of Iran\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18869/ACADPUB.JSRI.9.1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Research of Iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/ACADPUB.JSRI.9.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文从指数分布出发,讨论了混合截尾样本中截尾单元失效时间的不同预测因子。得到了机组失效时间的贝叶斯和非贝叶斯点预测量。非贝叶斯预测区间是基于枢纽和最高条件密度方法得到的。提出了贝叶斯预测区间。通过对一个真实数据集的分析来说明所有的预测方法。最后,利用蒙特卡罗模拟对不同的预测方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Times to Failure of Censored Units in Hybrid Censored Samples from Exponential Distribution
Abstract. In this paper, we discuss different predictors of times to failure of units censored in a hybrid censored sample from exponential distribution. Bayesian and non-Bayesian point predictors for the times to failure of units are obtained. Non-Bayesian prediction intervals are obtained based on pivotal and highest conditional density methods. Bayesian prediction intervals are also proposed. One real data set has been analyzed to illustrate all the prediction methods. Finally, different prediction methods have been compared using Monte Carlo simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信