广义亥姆霍兹方程的并行解

L. Freitag, J. Ortega
{"title":"广义亥姆霍兹方程的并行解","authors":"L. Freitag, J. Ortega","doi":"10.1109/SHPCC.1992.232654","DOIUrl":null,"url":null,"abstract":"Uses the reduced system conjugate gradient algorithm to find the solution of large, sparse, symmetric, positive definite systems of linear equations arising from finite difference discretization of the generalized Helmholtz equation. The authors examine in detail three spatial domain decompositions on distributed memory machines. They use a two-step damped Jacobi preconditioner for the Schur complement system and find that although the number of iterations required for convergence is nearly halved, overall solution time is slightly increased. The authors introduce a modification to the preconditioner in order to reduce overhead.<<ETX>>","PeriodicalId":254515,"journal":{"name":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel solution of the generalized Helmholtz equation\",\"authors\":\"L. Freitag, J. Ortega\",\"doi\":\"10.1109/SHPCC.1992.232654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uses the reduced system conjugate gradient algorithm to find the solution of large, sparse, symmetric, positive definite systems of linear equations arising from finite difference discretization of the generalized Helmholtz equation. The authors examine in detail three spatial domain decompositions on distributed memory machines. They use a two-step damped Jacobi preconditioner for the Schur complement system and find that although the number of iterations required for convergence is nearly halved, overall solution time is slightly increased. The authors introduce a modification to the preconditioner in order to reduce overhead.<<ETX>>\",\"PeriodicalId\":254515,\"journal\":{\"name\":\"Proceedings Scalable High Performance Computing Conference SHPCC-92.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Scalable High Performance Computing Conference SHPCC-92.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SHPCC.1992.232654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHPCC.1992.232654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用简化系统共轭梯度算法求解由广义亥姆霍兹方程的有限差分离散化引起的大型、稀疏、对称、正定线性方程组。作者详细研究了分布式存储机上的三种空间域分解。他们对Schur补系统使用了两步阻尼Jacobi预条件,并发现尽管收敛所需的迭代次数几乎减少了一半,但总体求解时间略有增加。为了减少开销,作者对前置条件进行了修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel solution of the generalized Helmholtz equation
Uses the reduced system conjugate gradient algorithm to find the solution of large, sparse, symmetric, positive definite systems of linear equations arising from finite difference discretization of the generalized Helmholtz equation. The authors examine in detail three spatial domain decompositions on distributed memory machines. They use a two-step damped Jacobi preconditioner for the Schur complement system and find that although the number of iterations required for convergence is nearly halved, overall solution time is slightly increased. The authors introduce a modification to the preconditioner in order to reduce overhead.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信