自动化质量控制在智能工厂中的应用——基于深度学习的方法

Subbalakshmi Mandapaka, Catalina Diaz, Hasbanny Irisson, Aditya Akundi, Viviana Lopez, Douglas Timmer
{"title":"自动化质量控制在智能工厂中的应用——基于深度学习的方法","authors":"Subbalakshmi Mandapaka, Catalina Diaz, Hasbanny Irisson, Aditya Akundi, Viviana Lopez, Douglas Timmer","doi":"10.1109/SysCon53073.2023.10131100","DOIUrl":null,"url":null,"abstract":"Industry 4.0 is the ongoing automation of conventional manufacturing and industrial applications using smart technology. Quality control (QC) is a set of procedures to ensure that a manufactured product adheres to a defined set of quality criteria or meets the requirements of the customer. Many applications within the manufacturing domain employ image-processing or machine learning systems but deep learning-based applications are rare. The goal of this project is to leverage deep learning methods for the automation of quality control. A visual QC automation application is proposed that utilizes a camera placed over a product assembly line containing 3-D printed product samples in a smart factory prototype setup for data collection. After model training, the model will perform object detection and recognition for analyzing complex free-form products and perform product dimension and surface analysis to identify the products that meet the quality control guidelines.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Automated Quality Control in Smart Factories - A Deep Learning-based Approach\",\"authors\":\"Subbalakshmi Mandapaka, Catalina Diaz, Hasbanny Irisson, Aditya Akundi, Viviana Lopez, Douglas Timmer\",\"doi\":\"10.1109/SysCon53073.2023.10131100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industry 4.0 is the ongoing automation of conventional manufacturing and industrial applications using smart technology. Quality control (QC) is a set of procedures to ensure that a manufactured product adheres to a defined set of quality criteria or meets the requirements of the customer. Many applications within the manufacturing domain employ image-processing or machine learning systems but deep learning-based applications are rare. The goal of this project is to leverage deep learning methods for the automation of quality control. A visual QC automation application is proposed that utilizes a camera placed over a product assembly line containing 3-D printed product samples in a smart factory prototype setup for data collection. After model training, the model will perform object detection and recognition for analyzing complex free-form products and perform product dimension and surface analysis to identify the products that meet the quality control guidelines.\",\"PeriodicalId\":169296,\"journal\":{\"name\":\"2023 IEEE International Systems Conference (SysCon)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Systems Conference (SysCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SysCon53073.2023.10131100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Systems Conference (SysCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SysCon53073.2023.10131100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

工业4.0是使用智能技术的传统制造和工业应用的持续自动化。质量控制(QC)是一套程序,以确保制造的产品符合一套确定的质量标准或满足客户的要求。制造领域的许多应用都使用图像处理或机器学习系统,但基于深度学习的应用很少。该项目的目标是利用深度学习方法实现质量控制的自动化。提出了一种可视化QC自动化应用程序,该应用程序在智能工厂原型设置中利用放置在包含3d打印产品样品的产品装配线上的摄像头进行数据收集。经过模型训练后,模型将进行对象检测和识别,用于分析复杂的自由形状产品,并进行产品尺寸和表面分析,以识别符合质量控制指南的产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Automated Quality Control in Smart Factories - A Deep Learning-based Approach
Industry 4.0 is the ongoing automation of conventional manufacturing and industrial applications using smart technology. Quality control (QC) is a set of procedures to ensure that a manufactured product adheres to a defined set of quality criteria or meets the requirements of the customer. Many applications within the manufacturing domain employ image-processing or machine learning systems but deep learning-based applications are rare. The goal of this project is to leverage deep learning methods for the automation of quality control. A visual QC automation application is proposed that utilizes a camera placed over a product assembly line containing 3-D printed product samples in a smart factory prototype setup for data collection. After model training, the model will perform object detection and recognition for analyzing complex free-form products and perform product dimension and surface analysis to identify the products that meet the quality control guidelines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信