Carmen Ibáñez Usach, D. Hernández-Figueirido, Ana Piquer Vicent
{"title":"钢管厚度和混凝土强度对钢管混凝土短柱轴向承载力的影响","authors":"Carmen Ibáñez Usach, D. Hernández-Figueirido, Ana Piquer Vicent","doi":"10.4995/ASCCS2018.2018.7196","DOIUrl":null,"url":null,"abstract":"In order to study the mechanical response of concrete-filled steel tubular (CFST) columns, several experimental and theoretical studies have been conducted in the last years. However, the influence of thin-walled steel tubes on the axial capacity of these composite columns is not completely stablished, especially when it is combined with high-strength concrete as infill. In this paper, the results of an experimental campaign on 9 concrete-filled steel tubular stub columns subjected to concentric load are presented. Different cross-section shapes are considered in this campaign, i.e. circular, square and rectangular. The influence of the steel tube wall thickness is analysed by including in the tests specimens with thin-walled tubes, whose behaviour needs to be studied in depth given the issues arising when working under compression. The experimental program is designed so the analysis of the results permits to drawn consistent conclusions. For each series, the steel tube thickness is the only geometric parameter modified in order to properly study its effect. Besides, two different concrete strengths were considered for the concrete infill, i.e. normal and high- strength concrete, to observe their effect on the ultimate capacity of the columns. During the tests, the specimens are subjected to axial load and the evolution of the axial displacement with the load is registered. The ultimate capacity of each specimen is obtained and an analysis of the steel tube thickness and concrete strength influence is accomplished. Finally, the study of the dependency of the failure mode on these parameters is carried out.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Influence of steel tube thickness and concrete strength on the axial capacity of stub CFST columns\",\"authors\":\"Carmen Ibáñez Usach, D. Hernández-Figueirido, Ana Piquer Vicent\",\"doi\":\"10.4995/ASCCS2018.2018.7196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to study the mechanical response of concrete-filled steel tubular (CFST) columns, several experimental and theoretical studies have been conducted in the last years. However, the influence of thin-walled steel tubes on the axial capacity of these composite columns is not completely stablished, especially when it is combined with high-strength concrete as infill. In this paper, the results of an experimental campaign on 9 concrete-filled steel tubular stub columns subjected to concentric load are presented. Different cross-section shapes are considered in this campaign, i.e. circular, square and rectangular. The influence of the steel tube wall thickness is analysed by including in the tests specimens with thin-walled tubes, whose behaviour needs to be studied in depth given the issues arising when working under compression. The experimental program is designed so the analysis of the results permits to drawn consistent conclusions. For each series, the steel tube thickness is the only geometric parameter modified in order to properly study its effect. Besides, two different concrete strengths were considered for the concrete infill, i.e. normal and high- strength concrete, to observe their effect on the ultimate capacity of the columns. During the tests, the specimens are subjected to axial load and the evolution of the axial displacement with the load is registered. The ultimate capacity of each specimen is obtained and an analysis of the steel tube thickness and concrete strength influence is accomplished. Finally, the study of the dependency of the failure mode on these parameters is carried out.\",\"PeriodicalId\":320267,\"journal\":{\"name\":\"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/ASCCS2018.2018.7196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/ASCCS2018.2018.7196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of steel tube thickness and concrete strength on the axial capacity of stub CFST columns
In order to study the mechanical response of concrete-filled steel tubular (CFST) columns, several experimental and theoretical studies have been conducted in the last years. However, the influence of thin-walled steel tubes on the axial capacity of these composite columns is not completely stablished, especially when it is combined with high-strength concrete as infill. In this paper, the results of an experimental campaign on 9 concrete-filled steel tubular stub columns subjected to concentric load are presented. Different cross-section shapes are considered in this campaign, i.e. circular, square and rectangular. The influence of the steel tube wall thickness is analysed by including in the tests specimens with thin-walled tubes, whose behaviour needs to be studied in depth given the issues arising when working under compression. The experimental program is designed so the analysis of the results permits to drawn consistent conclusions. For each series, the steel tube thickness is the only geometric parameter modified in order to properly study its effect. Besides, two different concrete strengths were considered for the concrete infill, i.e. normal and high- strength concrete, to observe their effect on the ultimate capacity of the columns. During the tests, the specimens are subjected to axial load and the evolution of the axial displacement with the load is registered. The ultimate capacity of each specimen is obtained and an analysis of the steel tube thickness and concrete strength influence is accomplished. Finally, the study of the dependency of the failure mode on these parameters is carried out.