用人工神经网络模拟合金元素对高碳钢Ms温度的定量影响

Xiao-song Wang, P. Narayana, A. K. Maurya, H. Kim, B. Hur, N. Reddy
{"title":"用人工神经网络模拟合金元素对高碳钢Ms温度的定量影响","authors":"Xiao-song Wang, P. Narayana, A. K. Maurya, H. Kim, B. Hur, N. Reddy","doi":"10.2139/ssrn.3889918","DOIUrl":null,"url":null,"abstract":"Chemical composition affects the properties and the martensite start (Ms) temperature of steels. This study predicts the Ms temperature of high carbon steel via artificial neural networks. Meanwhile, it enables us to estimate the quantitative effect of alloying elements on the Ms temperature on a sizeable selectable scale, which is the first time to release such results exactly. Compared to the previous formulas, this one is simple, visual, with high accuracy.","PeriodicalId":376919,"journal":{"name":"EnergyRN: Electrochemical Energy Engineering (EnergyRN) (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Quantitative Effect of Alloying Elements on the Ms Temperature of High Carbon Steel by Artificial Neural Networks\",\"authors\":\"Xiao-song Wang, P. Narayana, A. K. Maurya, H. Kim, B. Hur, N. Reddy\",\"doi\":\"10.2139/ssrn.3889918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical composition affects the properties and the martensite start (Ms) temperature of steels. This study predicts the Ms temperature of high carbon steel via artificial neural networks. Meanwhile, it enables us to estimate the quantitative effect of alloying elements on the Ms temperature on a sizeable selectable scale, which is the first time to release such results exactly. Compared to the previous formulas, this one is simple, visual, with high accuracy.\",\"PeriodicalId\":376919,\"journal\":{\"name\":\"EnergyRN: Electrochemical Energy Engineering (EnergyRN) (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyRN: Electrochemical Energy Engineering (EnergyRN) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3889918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyRN: Electrochemical Energy Engineering (EnergyRN) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3889918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

化学成分影响钢的性能和马氏体起始温度。利用人工神经网络对高碳钢的Ms温度进行了预测。同时,它使我们能够在相当大的可选择范围内估计合金元素对Ms温度的定量影响,这是第一次准确地发布这样的结果。与以前的公式相比,这个公式简单、直观、精度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the Quantitative Effect of Alloying Elements on the Ms Temperature of High Carbon Steel by Artificial Neural Networks
Chemical composition affects the properties and the martensite start (Ms) temperature of steels. This study predicts the Ms temperature of high carbon steel via artificial neural networks. Meanwhile, it enables us to estimate the quantitative effect of alloying elements on the Ms temperature on a sizeable selectable scale, which is the first time to release such results exactly. Compared to the previous formulas, this one is simple, visual, with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信