{"title":"用有限零稳定性交换非线性串级系统的全局稳定","authors":"R. Sepulchre, M. Arcak, A. Teel","doi":"10.1109/CDC.2001.980738","DOIUrl":null,"url":null,"abstract":"Analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a stable nonlinear system. It is shown that the instability of the zeros of the linear system can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Trading the stability of finite zeros for global stabilization of nonlinear cascade systems\",\"authors\":\"R. Sepulchre, M. Arcak, A. Teel\",\"doi\":\"10.1109/CDC.2001.980738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a stable nonlinear system. It is shown that the instability of the zeros of the linear system can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.980738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Trading the stability of finite zeros for global stabilization of nonlinear cascade systems
Analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a stable nonlinear system. It is shown that the instability of the zeros of the linear system can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.