关于闵可夫斯基球的clf的通用公式

Michael A. Malisoff, Eduardo Sontag
{"title":"关于闵可夫斯基球的clf的通用公式","authors":"Michael A. Malisoff, Eduardo Sontag","doi":"10.1109/ACC.1999.782318","DOIUrl":null,"url":null,"abstract":"This note provides explicit, algebraic stabilizing formulas for control Lyapunov functions when controls are restricted to certain Minkowski balls in Euclidean space. Feedbacks of this kind are known to exist by a theorem of Artstein (1995), but the proof of Artstein's theorem is nonconstructive. The formulas are used to construct approximation solutions to some stabilization problems.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Universal formulas for CLFs with respect to Minkowski balls\",\"authors\":\"Michael A. Malisoff, Eduardo Sontag\",\"doi\":\"10.1109/ACC.1999.782318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note provides explicit, algebraic stabilizing formulas for control Lyapunov functions when controls are restricted to certain Minkowski balls in Euclidean space. Feedbacks of this kind are known to exist by a theorem of Artstein (1995), but the proof of Artstein's theorem is nonconstructive. The formulas are used to construct approximation solutions to some stabilization problems.\",\"PeriodicalId\":441363,\"journal\":{\"name\":\"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1999.782318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.782318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文给出了当控制被限制于欧几里德空间中的某些Minkowski球时,控制Lyapunov函数的显式代数稳定公式。Artstein(1995)的一个定理已知这种反馈是存在的,但是Artstein定理的证明是非建设性的。这些公式被用来构造一些稳定问题的近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal formulas for CLFs with respect to Minkowski balls
This note provides explicit, algebraic stabilizing formulas for control Lyapunov functions when controls are restricted to certain Minkowski balls in Euclidean space. Feedbacks of this kind are known to exist by a theorem of Artstein (1995), but the proof of Artstein's theorem is nonconstructive. The formulas are used to construct approximation solutions to some stabilization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信