{"title":"高熵CoFeMnNi合金在低应变率热变形条件下的变形行为及显微组织演变","authors":"Lihua Du, Jiaai Shi, Jiayu Liang, Kailun Zheng","doi":"10.21741/9781644902615-29","DOIUrl":null,"url":null,"abstract":"Abstract. High-entropy alloy is a promising structural material for high-temperature service applications due to the designable superior properties. Superplasticity, normally achieved at relatively high temperature and low strain rate, enables difficult to formation materials to manufacture complex-shaped parts. This paper presents a feasibility experimental study on the deformation and microstructure of CoFeMnNi high-entropy alloy under hot deformation conditions with low strain rate. A series of hot uniaxial tests were conducted at the temperature range between 800-1000℃ with typical strain rates of 10-4 and 10-5/s to determine the stress-strain behaviours. Additionally, to understand the deformation mechanism, microstructure evolution after deformation was characterized. Finally, a mechanism based constitutive model of high-entropy alloy was developed, which facilities the process optimization by finite element simulations.","PeriodicalId":242571,"journal":{"name":"Superplasticity in Advanced Materials","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation behaviour and microstructural evolution of high-entropy CoFeMnNi alloy at hot deformation condition with low strain rate\",\"authors\":\"Lihua Du, Jiaai Shi, Jiayu Liang, Kailun Zheng\",\"doi\":\"10.21741/9781644902615-29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. High-entropy alloy is a promising structural material for high-temperature service applications due to the designable superior properties. Superplasticity, normally achieved at relatively high temperature and low strain rate, enables difficult to formation materials to manufacture complex-shaped parts. This paper presents a feasibility experimental study on the deformation and microstructure of CoFeMnNi high-entropy alloy under hot deformation conditions with low strain rate. A series of hot uniaxial tests were conducted at the temperature range between 800-1000℃ with typical strain rates of 10-4 and 10-5/s to determine the stress-strain behaviours. Additionally, to understand the deformation mechanism, microstructure evolution after deformation was characterized. Finally, a mechanism based constitutive model of high-entropy alloy was developed, which facilities the process optimization by finite element simulations.\",\"PeriodicalId\":242571,\"journal\":{\"name\":\"Superplasticity in Advanced Materials\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superplasticity in Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21741/9781644902615-29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superplasticity in Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644902615-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deformation behaviour and microstructural evolution of high-entropy CoFeMnNi alloy at hot deformation condition with low strain rate
Abstract. High-entropy alloy is a promising structural material for high-temperature service applications due to the designable superior properties. Superplasticity, normally achieved at relatively high temperature and low strain rate, enables difficult to formation materials to manufacture complex-shaped parts. This paper presents a feasibility experimental study on the deformation and microstructure of CoFeMnNi high-entropy alloy under hot deformation conditions with low strain rate. A series of hot uniaxial tests were conducted at the temperature range between 800-1000℃ with typical strain rates of 10-4 and 10-5/s to determine the stress-strain behaviours. Additionally, to understand the deformation mechanism, microstructure evolution after deformation was characterized. Finally, a mechanism based constitutive model of high-entropy alloy was developed, which facilities the process optimization by finite element simulations.