改进相似度搜索方法

ACM SE '10 Pub Date : 2010-04-15 DOI:10.1145/1900008.1900076
Yong Shi
{"title":"改进相似度搜索方法","authors":"Yong Shi","doi":"10.1145/1900008.1900076","DOIUrl":null,"url":null,"abstract":"In this paper, we present continuous research on data analysis based on our previous work on similarity search problems. PanKNN [13] is a novel technique which explores the meaning of K nearest neighbors from a new perspective, redefines the distances between data points and a given query point Q, and efficiently and effectively selects data points which are closest to Q. It can be applied in various data mining fields. In this paper, we present our approach to improving the PanKNN algorithm using the Shrinking concept. Shrinking[15] is a data preprocessing technique which optimizes the inner structure of data inspired by the Newton's Universal Law of Gravitation[11] in the real world. This improved approach can assist to improve the performance of existing data analysis approaches.","PeriodicalId":333104,"journal":{"name":"ACM SE '10","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards improving a similarity search approach\",\"authors\":\"Yong Shi\",\"doi\":\"10.1145/1900008.1900076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present continuous research on data analysis based on our previous work on similarity search problems. PanKNN [13] is a novel technique which explores the meaning of K nearest neighbors from a new perspective, redefines the distances between data points and a given query point Q, and efficiently and effectively selects data points which are closest to Q. It can be applied in various data mining fields. In this paper, we present our approach to improving the PanKNN algorithm using the Shrinking concept. Shrinking[15] is a data preprocessing technique which optimizes the inner structure of data inspired by the Newton's Universal Law of Gravitation[11] in the real world. This improved approach can assist to improve the performance of existing data analysis approaches.\",\"PeriodicalId\":333104,\"journal\":{\"name\":\"ACM SE '10\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SE '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1900008.1900076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SE '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1900008.1900076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在前人研究相似搜索问题的基础上,对数据分析进行了持续的研究。PanKNN[13]是一种新颖的技术,它从新的角度探索K个最近邻的含义,重新定义数据点与给定查询点Q之间的距离,并高效有效地选择最接近Q的数据点,可应用于各种数据挖掘领域。在本文中,我们提出了使用收缩概念改进PanKNN算法的方法。收缩[15]是受现实世界中牛顿万有引力定律[11]的启发,对数据内部结构进行优化的数据预处理技术。这种改进的方法有助于提高现有数据分析方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards improving a similarity search approach
In this paper, we present continuous research on data analysis based on our previous work on similarity search problems. PanKNN [13] is a novel technique which explores the meaning of K nearest neighbors from a new perspective, redefines the distances between data points and a given query point Q, and efficiently and effectively selects data points which are closest to Q. It can be applied in various data mining fields. In this paper, we present our approach to improving the PanKNN algorithm using the Shrinking concept. Shrinking[15] is a data preprocessing technique which optimizes the inner structure of data inspired by the Newton's Universal Law of Gravitation[11] in the real world. This improved approach can assist to improve the performance of existing data analysis approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信