模型训练

Raymond A. Anderson
{"title":"模型训练","authors":"Raymond A. Anderson","doi":"10.1093/oso/9780192844194.003.0024","DOIUrl":null,"url":null,"abstract":"The chapter provides an approach and issues for model-training using Logistic Regression. (1) Regression—key model qualities plus i) options and settings, and ii) outputs to be expected/demanded. (2) Variable selection—i) criteria; ii) automation; iii) stepwise review; iv) constraining betas, where coefficients do not make sense; v) stepping by Gini, model pruning. (3) Correlation checks—i) multicollinearity—checks of variance inflation factors; ii) correlations—further checks to guard against the inclusion of highly correlated variables. (4) Blockwise variable selection—treatment in groups: i) variable reduction; ii) staged, or hierarchical regression; iii) embedded, model outputs as predictors; iv) ensemble, using outputs of other models. (5) Multi-model comparisons—Lorenz curves and strategy curves, should choices not be clear. (6) Calibration—i) simple adjustment by a constant; ii) piecewise, varying adjustments by the prediction; iii) score and points—adjusting the final score or constituent points; iv) MAPA, for more complex situations","PeriodicalId":286194,"journal":{"name":"Credit Intelligence & Modelling","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Training\",\"authors\":\"Raymond A. Anderson\",\"doi\":\"10.1093/oso/9780192844194.003.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chapter provides an approach and issues for model-training using Logistic Regression. (1) Regression—key model qualities plus i) options and settings, and ii) outputs to be expected/demanded. (2) Variable selection—i) criteria; ii) automation; iii) stepwise review; iv) constraining betas, where coefficients do not make sense; v) stepping by Gini, model pruning. (3) Correlation checks—i) multicollinearity—checks of variance inflation factors; ii) correlations—further checks to guard against the inclusion of highly correlated variables. (4) Blockwise variable selection—treatment in groups: i) variable reduction; ii) staged, or hierarchical regression; iii) embedded, model outputs as predictors; iv) ensemble, using outputs of other models. (5) Multi-model comparisons—Lorenz curves and strategy curves, should choices not be clear. (6) Calibration—i) simple adjustment by a constant; ii) piecewise, varying adjustments by the prediction; iii) score and points—adjusting the final score or constituent points; iv) MAPA, for more complex situations\",\"PeriodicalId\":286194,\"journal\":{\"name\":\"Credit Intelligence & Modelling\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Credit Intelligence & Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192844194.003.0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Credit Intelligence & Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192844194.003.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章提供了使用逻辑回归进行模型训练的方法和问题。(1)回归关键模型质量加上i)选项和设置,以及ii)预期/要求的输出。(2)变量选择(i)准则;(二)自动化;Iii)逐步回顾;Iv)约束beta,其中系数没有意义;v)步进基尼,模型修剪。(3)相关检验—i)多重共线性检验—方差膨胀因子检验;Ii)相关性——进一步检查以防止包含高度相关的变量。(4)分组变量选择—分组处理:1)变量缩减;Ii)阶段回归或分层回归;Iii)嵌入模型输出作为预测因子;Iv)集成,使用其他模型的输出。(5)多模型比较——洛伦兹曲线和策略曲线,应该选择不明确。(6)校准——i)用常数进行简单调整;Ii)分段的、不同的预测调整;Iii)分数和积分——调整最终分数或组成分;iv) MAPA,用于更复杂的情况
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Training
The chapter provides an approach and issues for model-training using Logistic Regression. (1) Regression—key model qualities plus i) options and settings, and ii) outputs to be expected/demanded. (2) Variable selection—i) criteria; ii) automation; iii) stepwise review; iv) constraining betas, where coefficients do not make sense; v) stepping by Gini, model pruning. (3) Correlation checks—i) multicollinearity—checks of variance inflation factors; ii) correlations—further checks to guard against the inclusion of highly correlated variables. (4) Blockwise variable selection—treatment in groups: i) variable reduction; ii) staged, or hierarchical regression; iii) embedded, model outputs as predictors; iv) ensemble, using outputs of other models. (5) Multi-model comparisons—Lorenz curves and strategy curves, should choices not be clear. (6) Calibration—i) simple adjustment by a constant; ii) piecewise, varying adjustments by the prediction; iii) score and points—adjusting the final score or constituent points; iv) MAPA, for more complex situations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信