基于递归神经网络的双掩蔽风噪声降噪系统

Weihao Liu, Yen-Ting Lai, Kai-Wen Liang, Jia-Ching Wang, P. Chang
{"title":"基于递归神经网络的双掩蔽风噪声降噪系统","authors":"Weihao Liu, Yen-Ting Lai, Kai-Wen Liang, Jia-Ching Wang, P. Chang","doi":"10.1109/ISPACS51563.2021.9650991","DOIUrl":null,"url":null,"abstract":"In this paper, we adopt the architecture of permutation invariant training (PIT) model. We take advantage of the dual mask features of the speech separation architecture and combine the results of the two masks to synthesize a better signal with a specific ratio. We use bidirectional gated recurrent unit (BGRU) to find appropriate weights for the features after short time Fourier transform (STFT). A mask finds the signal you want to keep. Another mask finds the unwanted signals. Compared with the traditional method for eliminating wind noise, our proposed method can achieve better noise reduction for non-stationary and non-periodic wind noise.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual-Masking Wind Noise Reduction System Based on Recurrent Neural Network\",\"authors\":\"Weihao Liu, Yen-Ting Lai, Kai-Wen Liang, Jia-Ching Wang, P. Chang\",\"doi\":\"10.1109/ISPACS51563.2021.9650991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we adopt the architecture of permutation invariant training (PIT) model. We take advantage of the dual mask features of the speech separation architecture and combine the results of the two masks to synthesize a better signal with a specific ratio. We use bidirectional gated recurrent unit (BGRU) to find appropriate weights for the features after short time Fourier transform (STFT). A mask finds the signal you want to keep. Another mask finds the unwanted signals. Compared with the traditional method for eliminating wind noise, our proposed method can achieve better noise reduction for non-stationary and non-periodic wind noise.\",\"PeriodicalId\":359822,\"journal\":{\"name\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS51563.2021.9650991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9650991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们采用了排列不变训练(PIT)模型的架构。我们利用语音分离架构的双掩模特性,结合两个掩模的结果,以特定的比例合成更好的信号。我们使用双向门控循环单元(BGRU)对短时间傅里叶变换(STFT)后的特征找到合适的权值。面具能找到你想要保留的信号。另一个掩码找到不需要的信号。与传统的风噪声消除方法相比,本文提出的方法对非平稳、非周期性风噪声的降噪效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Masking Wind Noise Reduction System Based on Recurrent Neural Network
In this paper, we adopt the architecture of permutation invariant training (PIT) model. We take advantage of the dual mask features of the speech separation architecture and combine the results of the two masks to synthesize a better signal with a specific ratio. We use bidirectional gated recurrent unit (BGRU) to find appropriate weights for the features after short time Fourier transform (STFT). A mask finds the signal you want to keep. Another mask finds the unwanted signals. Compared with the traditional method for eliminating wind noise, our proposed method can achieve better noise reduction for non-stationary and non-periodic wind noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信