用于电潜泵新特性检测的单类分类器

Gabriel Soares Baptista, L. H. S. Mello, Thiago Oliveira-Santos, F. M. Varejão, M. Ribeiro, A. Rodrigues
{"title":"用于电潜泵新特性检测的单类分类器","authors":"Gabriel Soares Baptista, L. H. S. Mello, Thiago Oliveira-Santos, F. M. Varejão, M. Ribeiro, A. Rodrigues","doi":"10.1109/SIBGRAPI54419.2021.00061","DOIUrl":null,"url":null,"abstract":"Detecting anomalies and fault novelties is of high interest in the industry due to the scarcity of fault examples to train classification systems. In this article two algorithms for anomaly detection, One-Class SVM and Isolation Forest, are successfully used as effective methods for detecting fault novelties in problems of electrical submersible pumps. Faults in submersible electric pumps generate an enormous cost for companies in the oil and gas sector, since the cost of stopping production to change the equipment is excessive, which makes it necessary to identify problems before implementation. Empirical evaluation shows that both one-class classifiers performed satisfactorily, obtaining macro f-measure values of approximately 0.86. For comparison purposes, a Random Forest trained in a conventional binary classification manner is tested and achieved a macro f-measure of 0.95. Results show that the proposed solutions can have practical applications in the classification of problems in electrical submersible pumps, changing the way the oil and gas industry addresses this difficulty.","PeriodicalId":197423,"journal":{"name":"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"One-Class Classifiers for Novelties Detection in Electrical Submersible Pumps\",\"authors\":\"Gabriel Soares Baptista, L. H. S. Mello, Thiago Oliveira-Santos, F. M. Varejão, M. Ribeiro, A. Rodrigues\",\"doi\":\"10.1109/SIBGRAPI54419.2021.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting anomalies and fault novelties is of high interest in the industry due to the scarcity of fault examples to train classification systems. In this article two algorithms for anomaly detection, One-Class SVM and Isolation Forest, are successfully used as effective methods for detecting fault novelties in problems of electrical submersible pumps. Faults in submersible electric pumps generate an enormous cost for companies in the oil and gas sector, since the cost of stopping production to change the equipment is excessive, which makes it necessary to identify problems before implementation. Empirical evaluation shows that both one-class classifiers performed satisfactorily, obtaining macro f-measure values of approximately 0.86. For comparison purposes, a Random Forest trained in a conventional binary classification manner is tested and achieved a macro f-measure of 0.95. Results show that the proposed solutions can have practical applications in the classification of problems in electrical submersible pumps, changing the way the oil and gas industry addresses this difficulty.\",\"PeriodicalId\":197423,\"journal\":{\"name\":\"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI54419.2021.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI54419.2021.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于用于训练分类系统的故障示例的稀缺性,检测异常和故障新奇性在业界具有很高的兴趣。本文成功地将一类支持向量机和隔离森林两种异常检测算法作为检测电潜泵故障新颖性的有效方法。潜水泵的故障给油气公司带来了巨大的成本,因为停产更换设备的成本过高,因此有必要在实施前识别问题。经验评价表明,这两个单类分类器的表现令人满意,获得了约0.86的宏观f-measure值。为了进行比较,我们测试了一个以传统的二分类方式训练的随机森林,其宏观f值为0.95。结果表明,所提出的解决方案可以实际应用于电潜泵问题的分类,改变石油和天然气行业解决这一难题的方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Class Classifiers for Novelties Detection in Electrical Submersible Pumps
Detecting anomalies and fault novelties is of high interest in the industry due to the scarcity of fault examples to train classification systems. In this article two algorithms for anomaly detection, One-Class SVM and Isolation Forest, are successfully used as effective methods for detecting fault novelties in problems of electrical submersible pumps. Faults in submersible electric pumps generate an enormous cost for companies in the oil and gas sector, since the cost of stopping production to change the equipment is excessive, which makes it necessary to identify problems before implementation. Empirical evaluation shows that both one-class classifiers performed satisfactorily, obtaining macro f-measure values of approximately 0.86. For comparison purposes, a Random Forest trained in a conventional binary classification manner is tested and achieved a macro f-measure of 0.95. Results show that the proposed solutions can have practical applications in the classification of problems in electrical submersible pumps, changing the way the oil and gas industry addresses this difficulty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信