可逆二元矩阵中可逆子矩阵最大比例的求值

Jiayi Hu
{"title":"可逆二元矩阵中可逆子矩阵最大比例的求值","authors":"Jiayi Hu","doi":"10.1145/3545839.3545843","DOIUrl":null,"url":null,"abstract":"The research on all-or-nothing transform in cryptography leads to the problem that, for a given positive integer , what is the density of invertible submatrices of any invertible matrix? For binary matrices, previous work shows that in the case , , where denotes the maximum proportion of invertible submatrices in invertible matrices. In this paper we study the case . It is proved that and an upper bound of is given as well.","PeriodicalId":249161,"journal":{"name":"Proceedings of the 2022 5th International Conference on Mathematics and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the maximum proportion of invertible submatrices in invertible binary matrices\",\"authors\":\"Jiayi Hu\",\"doi\":\"10.1145/3545839.3545843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research on all-or-nothing transform in cryptography leads to the problem that, for a given positive integer , what is the density of invertible submatrices of any invertible matrix? For binary matrices, previous work shows that in the case , , where denotes the maximum proportion of invertible submatrices in invertible matrices. In this paper we study the case . It is proved that and an upper bound of is given as well.\",\"PeriodicalId\":249161,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Mathematics and Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3545839.3545843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545839.3545843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

密码学中全或无变换的研究涉及到一个问题:对于给定的正整数,任意可逆矩阵的可逆子矩阵的密度是多少?对于二元矩阵,以前的工作表明,在,的情况下,其中表示可逆矩阵中可逆子矩阵的最大比例。本文对这一案例进行了研究。证明了这一点,并给出了的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the maximum proportion of invertible submatrices in invertible binary matrices
The research on all-or-nothing transform in cryptography leads to the problem that, for a given positive integer , what is the density of invertible submatrices of any invertible matrix? For binary matrices, previous work shows that in the case , , where denotes the maximum proportion of invertible submatrices in invertible matrices. In this paper we study the case . It is proved that and an upper bound of is given as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信