矢量形式的热力学第一定律与对流传热

Davidzon Mikhail Yosifovich
{"title":"矢量形式的热力学第一定律与对流传热","authors":"Davidzon Mikhail Yosifovich","doi":"10.11648/J.AJPA.20180606.12","DOIUrl":null,"url":null,"abstract":"Nowadays most of the practical calculations and theoretical findings in convective heat transfer amount to determining heat transfer coefficient (a coefficient of proportionality between surface density of the heat flux and temperature difference between the wall and the heated medium). An expression that includes heat transfer coefficient is called Newton’s law of cooling. The purpose of this study is to show that Newton’s law of cooling is not consistent with the first law of thermodynamics, and the study proves it using a new, vector form of the first law of thermodynamics, along with the more traditional scalar form. The study also offers a new analytically obtained expression for calculating surface density of the heat flux, and shows that it is not consistent with the Newton’s law of cooling. It also shows that Fourier’s thermal conduction law is a consequence of the first law of thermodynamics in vector form, and that Fourier-Richmann’s law of cooling and Newton’s law of cooling do not agree with the first law of thermodynamics. The results of this study can be used in engineering calculations for heat-using devices, as well as in a theoretical research. Additionally, the study suggests a new possible way to derive a nonlinear energy equation – by using vector form of the first law of thermodynamics. If previously obtained nonlinear Navier-Stokes equation is added to this nonlinear energy equation, a system of nonlinear equations could be obtained to correctly describe theory and practice of convective heat exchange, introducing completely new methods for calculating convective heat exchange (without using traditional heat transfer coefficients and laws of cooling).","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The First Law of Thermodynamics in Vector Form and Convective Heat Transfer\",\"authors\":\"Davidzon Mikhail Yosifovich\",\"doi\":\"10.11648/J.AJPA.20180606.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays most of the practical calculations and theoretical findings in convective heat transfer amount to determining heat transfer coefficient (a coefficient of proportionality between surface density of the heat flux and temperature difference between the wall and the heated medium). An expression that includes heat transfer coefficient is called Newton’s law of cooling. The purpose of this study is to show that Newton’s law of cooling is not consistent with the first law of thermodynamics, and the study proves it using a new, vector form of the first law of thermodynamics, along with the more traditional scalar form. The study also offers a new analytically obtained expression for calculating surface density of the heat flux, and shows that it is not consistent with the Newton’s law of cooling. It also shows that Fourier’s thermal conduction law is a consequence of the first law of thermodynamics in vector form, and that Fourier-Richmann’s law of cooling and Newton’s law of cooling do not agree with the first law of thermodynamics. The results of this study can be used in engineering calculations for heat-using devices, as well as in a theoretical research. Additionally, the study suggests a new possible way to derive a nonlinear energy equation – by using vector form of the first law of thermodynamics. If previously obtained nonlinear Navier-Stokes equation is added to this nonlinear energy equation, a system of nonlinear equations could be obtained to correctly describe theory and practice of convective heat exchange, introducing completely new methods for calculating convective heat exchange (without using traditional heat transfer coefficients and laws of cooling).\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20180606.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20180606.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前,对流换热的大多数实际计算和理论发现都是关于换热系数(热流的表面密度与壁面和被加热介质之间的温差之间的比例系数)的确定。包含传热系数的表达式称为牛顿冷却定律。本研究的目的是证明牛顿冷却定律与热力学第一定律不一致,并使用热力学第一定律的一种新的矢量形式,以及更传统的标量形式来证明这一点。本文还提出了一种新的计算热流密度的解析表达式,并表明该表达式不符合牛顿冷却定律。还表明傅立叶热传导定律是矢量形式热力学第一定律的结果,而傅立叶-里奇曼冷却定律和牛顿冷却定律与热力学第一定律不一致。研究结果可用于热利用装置的工程计算,也可用于理论研究。此外,该研究提出了一种新的可能的方法来推导非线性能量方程-通过使用热力学第一定律的矢量形式。如果将之前得到的非线性Navier-Stokes方程加入到这个非线性能量方程中,就可以得到一个能够正确描述对流换热理论和实践的非线性方程组,从而引入全新的对流换热计算方法(不使用传统的换热系数和冷却定律)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The First Law of Thermodynamics in Vector Form and Convective Heat Transfer
Nowadays most of the practical calculations and theoretical findings in convective heat transfer amount to determining heat transfer coefficient (a coefficient of proportionality between surface density of the heat flux and temperature difference between the wall and the heated medium). An expression that includes heat transfer coefficient is called Newton’s law of cooling. The purpose of this study is to show that Newton’s law of cooling is not consistent with the first law of thermodynamics, and the study proves it using a new, vector form of the first law of thermodynamics, along with the more traditional scalar form. The study also offers a new analytically obtained expression for calculating surface density of the heat flux, and shows that it is not consistent with the Newton’s law of cooling. It also shows that Fourier’s thermal conduction law is a consequence of the first law of thermodynamics in vector form, and that Fourier-Richmann’s law of cooling and Newton’s law of cooling do not agree with the first law of thermodynamics. The results of this study can be used in engineering calculations for heat-using devices, as well as in a theoretical research. Additionally, the study suggests a new possible way to derive a nonlinear energy equation – by using vector form of the first law of thermodynamics. If previously obtained nonlinear Navier-Stokes equation is added to this nonlinear energy equation, a system of nonlinear equations could be obtained to correctly describe theory and practice of convective heat exchange, introducing completely new methods for calculating convective heat exchange (without using traditional heat transfer coefficients and laws of cooling).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信