{"title":"Ranky:求解大型稀疏矩阵上分布SVD的一种方法","authors":"Resul Tugay, Ş. Öğüdücü","doi":"10.1109/ICSCEE.2018.8538381","DOIUrl":null,"url":null,"abstract":"Singular Value Decomposition (SVD) is a well studied research topic in many fields and applications from data mining to image processing. Data arising from these applications can be represented as a matrix where this matrix is large and sparse. Most existing algorithms are used to calculate singular values, left and right singular vectors of a largedense matrix but not large-sparse matrix. Even if they can find SVD of a large matrix, calculation of large-dense matrix has high time complexity due to sequential algorithms. Distributed approaches are proposed for computing SVD of large matrices. However, rank of the matrix is still being a problem when solving SVD with these distributed algorithms. In this paper we propose Ranky, set of methods to solve rank problem on large-sparse matrices in a distributed manner. Experimental results show that the Ranky approach recovers singular values, singular left and right vectors of a given large-sparse matrix with negligible error.","PeriodicalId":265737,"journal":{"name":"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ranky: An Approach to Solve Distributed SVD on Large Sparse Matrices\",\"authors\":\"Resul Tugay, Ş. Öğüdücü\",\"doi\":\"10.1109/ICSCEE.2018.8538381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Singular Value Decomposition (SVD) is a well studied research topic in many fields and applications from data mining to image processing. Data arising from these applications can be represented as a matrix where this matrix is large and sparse. Most existing algorithms are used to calculate singular values, left and right singular vectors of a largedense matrix but not large-sparse matrix. Even if they can find SVD of a large matrix, calculation of large-dense matrix has high time complexity due to sequential algorithms. Distributed approaches are proposed for computing SVD of large matrices. However, rank of the matrix is still being a problem when solving SVD with these distributed algorithms. In this paper we propose Ranky, set of methods to solve rank problem on large-sparse matrices in a distributed manner. Experimental results show that the Ranky approach recovers singular values, singular left and right vectors of a given large-sparse matrix with negligible error.\",\"PeriodicalId\":265737,\"journal\":{\"name\":\"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCEE.2018.8538381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCEE.2018.8538381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ranky: An Approach to Solve Distributed SVD on Large Sparse Matrices
Singular Value Decomposition (SVD) is a well studied research topic in many fields and applications from data mining to image processing. Data arising from these applications can be represented as a matrix where this matrix is large and sparse. Most existing algorithms are used to calculate singular values, left and right singular vectors of a largedense matrix but not large-sparse matrix. Even if they can find SVD of a large matrix, calculation of large-dense matrix has high time complexity due to sequential algorithms. Distributed approaches are proposed for computing SVD of large matrices. However, rank of the matrix is still being a problem when solving SVD with these distributed algorithms. In this paper we propose Ranky, set of methods to solve rank problem on large-sparse matrices in a distributed manner. Experimental results show that the Ranky approach recovers singular values, singular left and right vectors of a given large-sparse matrix with negligible error.