Huaping Jiang, Jin Wei, X. Dai, C. Zheng, Maolong Ke, Xiaochuan Deng, Y. Sharma, I. Deviny, P. Mawby
{"title":"内置SBD的SiC MOSFET,用于减少10kv应用中的反向恢复电荷和开关损耗","authors":"Huaping Jiang, Jin Wei, X. Dai, C. Zheng, Maolong Ke, Xiaochuan Deng, Y. Sharma, I. Deviny, P. Mawby","doi":"10.23919/ISPSD.2017.7988890","DOIUrl":null,"url":null,"abstract":"A silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) for 10-kV application is proposed in this paper, which features a built-in Schottky barrier diode (SBD). Therefore, the body diode is free from activation during the third quadrant conduction state, which is beneficial for reducing the switching loss and suppressing bipolar degradation. Numerical simulations with Sentaurus TCAD are carried out to investigate the characteristics of the proposed structure in comparison to the conventional MOSFET and SBD pair. It is found that the proposed structure achieves lower reverse recovery charge and switching loss owing to three factors, i.e., faster switching speed, smaller capacitive charge, and body diode deactivation, and therefore is a superior choice for 10-kV applications.","PeriodicalId":202561,"journal":{"name":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"SiC MOSFET with built-in SBD for reduction of reverse recovery charge and switching loss in 10-kV applications\",\"authors\":\"Huaping Jiang, Jin Wei, X. Dai, C. Zheng, Maolong Ke, Xiaochuan Deng, Y. Sharma, I. Deviny, P. Mawby\",\"doi\":\"10.23919/ISPSD.2017.7988890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) for 10-kV application is proposed in this paper, which features a built-in Schottky barrier diode (SBD). Therefore, the body diode is free from activation during the third quadrant conduction state, which is beneficial for reducing the switching loss and suppressing bipolar degradation. Numerical simulations with Sentaurus TCAD are carried out to investigate the characteristics of the proposed structure in comparison to the conventional MOSFET and SBD pair. It is found that the proposed structure achieves lower reverse recovery charge and switching loss owing to three factors, i.e., faster switching speed, smaller capacitive charge, and body diode deactivation, and therefore is a superior choice for 10-kV applications.\",\"PeriodicalId\":202561,\"journal\":{\"name\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ISPSD.2017.7988890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISPSD.2017.7988890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SiC MOSFET with built-in SBD for reduction of reverse recovery charge and switching loss in 10-kV applications
A silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) for 10-kV application is proposed in this paper, which features a built-in Schottky barrier diode (SBD). Therefore, the body diode is free from activation during the third quadrant conduction state, which is beneficial for reducing the switching loss and suppressing bipolar degradation. Numerical simulations with Sentaurus TCAD are carried out to investigate the characteristics of the proposed structure in comparison to the conventional MOSFET and SBD pair. It is found that the proposed structure achieves lower reverse recovery charge and switching loss owing to three factors, i.e., faster switching speed, smaller capacitive charge, and body diode deactivation, and therefore is a superior choice for 10-kV applications.