利用轮廓模型分割提高多tpu系统的推理时间

J. Villarrubia, Luis Costero, Francisco D. Igual, Katzalin Olcoz
{"title":"利用轮廓模型分割提高多tpu系统的推理时间","authors":"J. Villarrubia, Luis Costero, Francisco D. Igual, Katzalin Olcoz","doi":"10.1109/PDP59025.2023.00020","DOIUrl":null,"url":null,"abstract":"In this paper, we systematically evaluate the inference performance of the Edge TPU by Google for neural networks with different characteristics. Specifically, we determine that, given the limited amount of on-chip memory on the Edge TPU, accesses to external (host) memory rapidly become an important performance bottleneck. We demonstrate how multiple devices can be jointly used to alleviate the bottleneck introduced by accessing the host memory. We propose a solution combining model segmentation and pipelining on up to four TPUs, with remarkable performance improvements that range from 6x for neural networks with convolutional layers to 46x for fully connected layers, compared with single-TPU setups.","PeriodicalId":153500,"journal":{"name":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving inference time in multi-TPU systems with profiled model segmentation\",\"authors\":\"J. Villarrubia, Luis Costero, Francisco D. Igual, Katzalin Olcoz\",\"doi\":\"10.1109/PDP59025.2023.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we systematically evaluate the inference performance of the Edge TPU by Google for neural networks with different characteristics. Specifically, we determine that, given the limited amount of on-chip memory on the Edge TPU, accesses to external (host) memory rapidly become an important performance bottleneck. We demonstrate how multiple devices can be jointly used to alleviate the bottleneck introduced by accessing the host memory. We propose a solution combining model segmentation and pipelining on up to four TPUs, with remarkable performance improvements that range from 6x for neural networks with convolutional layers to 46x for fully connected layers, compared with single-TPU setups.\",\"PeriodicalId\":153500,\"journal\":{\"name\":\"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP59025.2023.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP59025.2023.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们系统地评估了Edge TPU对不同特征神经网络的推理性能。具体来说,我们确定,鉴于Edge TPU上的片上内存有限,对外部(主机)内存的访问迅速成为一个重要的性能瓶颈。我们将演示如何联合使用多个设备来缓解访问主机内存带来的瓶颈。我们提出了一种将模型分割和流水线结合在最多四个tpu上的解决方案,与单tpu设置相比,具有显著的性能改进,从具有卷积层的神经网络的6倍到完全连接层的46倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving inference time in multi-TPU systems with profiled model segmentation
In this paper, we systematically evaluate the inference performance of the Edge TPU by Google for neural networks with different characteristics. Specifically, we determine that, given the limited amount of on-chip memory on the Edge TPU, accesses to external (host) memory rapidly become an important performance bottleneck. We demonstrate how multiple devices can be jointly used to alleviate the bottleneck introduced by accessing the host memory. We propose a solution combining model segmentation and pipelining on up to four TPUs, with remarkable performance improvements that range from 6x for neural networks with convolutional layers to 46x for fully connected layers, compared with single-TPU setups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信