基于游客生态足迹模型集成的体育旅游目的地需求智能预测系统

Jun Yue, Xianzhi Xie, Zongkeng Li, Jiaqiang Chen
{"title":"基于游客生态足迹模型集成的体育旅游目的地需求智能预测系统","authors":"Jun Yue, Xianzhi Xie, Zongkeng Li, Jiaqiang Chen","doi":"10.1109/ICRIS.2018.00076","DOIUrl":null,"url":null,"abstract":"In view of the fact that the prediction of traditional sports tourism destinations is affected by the excessive entities and large dynamic changes of economic structure, this paper proposes a method of prediction of demand intellectualization for sports tourism destinations integrating tourist ecological footprint model (TEFM). It uses tourist ecological footprint model (TEFM) to optimize the non-linear characteristic indexes that affect the demand for sports tourism destinations, and then obtain the initial data for predicting the demand for sports tourism destinations. Then it adopts the multi-objective decision-making theory to conduct trade mediation for the long-term conflict of sports tourism destinations. Finally, through TEFM it makes compensation for sports tourism destinations for long-term conflicts. The analysis of experimental results shows that compared with other different models, the model designed in this paper has high prediction accuracy and can accurately predict the demand trend for sports tourism destinations.","PeriodicalId":194515,"journal":{"name":"2018 International Conference on Robots & Intelligent System (ICRIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent Prediction System of Sports Tourism Destination Demand Based on the Integration of Tourist Ecological Footprint Model\",\"authors\":\"Jun Yue, Xianzhi Xie, Zongkeng Li, Jiaqiang Chen\",\"doi\":\"10.1109/ICRIS.2018.00076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the fact that the prediction of traditional sports tourism destinations is affected by the excessive entities and large dynamic changes of economic structure, this paper proposes a method of prediction of demand intellectualization for sports tourism destinations integrating tourist ecological footprint model (TEFM). It uses tourist ecological footprint model (TEFM) to optimize the non-linear characteristic indexes that affect the demand for sports tourism destinations, and then obtain the initial data for predicting the demand for sports tourism destinations. Then it adopts the multi-objective decision-making theory to conduct trade mediation for the long-term conflict of sports tourism destinations. Finally, through TEFM it makes compensation for sports tourism destinations for long-term conflicts. The analysis of experimental results shows that compared with other different models, the model designed in this paper has high prediction accuracy and can accurately predict the demand trend for sports tourism destinations.\",\"PeriodicalId\":194515,\"journal\":{\"name\":\"2018 International Conference on Robots & Intelligent System (ICRIS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Robots & Intelligent System (ICRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRIS.2018.00076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Robots & Intelligent System (ICRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRIS.2018.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对传统体育旅游目的地预测存在实体过多、经济结构动态变化大的问题,提出了一种整合旅游生态足迹模型(TEFM)的体育旅游目的地需求智能化预测方法。利用游客生态足迹模型(TEFM)对影响体育旅游目的地需求的非线性特征指标进行优化,获得预测体育旅游目的地需求的初始数据。然后运用多目标决策理论对体育旅游目的地的长期冲突进行贸易调解。最后,通过TEFM对体育旅游目的地的长期冲突进行补偿。实验结果分析表明,与其他不同模型相比,本文设计的模型具有较高的预测精度,能够准确预测体育旅游目的地的需求趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Prediction System of Sports Tourism Destination Demand Based on the Integration of Tourist Ecological Footprint Model
In view of the fact that the prediction of traditional sports tourism destinations is affected by the excessive entities and large dynamic changes of economic structure, this paper proposes a method of prediction of demand intellectualization for sports tourism destinations integrating tourist ecological footprint model (TEFM). It uses tourist ecological footprint model (TEFM) to optimize the non-linear characteristic indexes that affect the demand for sports tourism destinations, and then obtain the initial data for predicting the demand for sports tourism destinations. Then it adopts the multi-objective decision-making theory to conduct trade mediation for the long-term conflict of sports tourism destinations. Finally, through TEFM it makes compensation for sports tourism destinations for long-term conflicts. The analysis of experimental results shows that compared with other different models, the model designed in this paper has high prediction accuracy and can accurately predict the demand trend for sports tourism destinations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信