使用YOLOF进行页面对象检测

Phuc Nguyen, Luu Ngo, Thang Truong, Trong-Thuan Nguyen, Nguyen D. Vo, Khang Nguyen
{"title":"使用YOLOF进行页面对象检测","authors":"Phuc Nguyen, Luu Ngo, Thang Truong, Trong-Thuan Nguyen, Nguyen D. Vo, Khang Nguyen","doi":"10.1109/NICS54270.2021.9701449","DOIUrl":null,"url":null,"abstract":"With the rapid development of information and technology, document digitization has become more critical in many research fields by giving enormous amounts of data. However, computers can not handle a lot of information contained inside physical documents. For that reason, making computers detect objects in document images can help humans have more valuable information such as graphs, captions, or tables. There should be a system capable of detecting various components on document images, especially finding a simply effective object recognition method. Thus, the introduction of YOLOF can be an appropriate method to detect objects in documents because it opens up a simple way to exploit image features, making the object detection problem less computationally intensive, but still maintaining the appropriate accuracy. This paper evaluates the new one-stage YOLOF method on two challenging document datasets: IIIT-AR-13K, UIT-DODV. Our experimental YOLOF model achieves 58.8% and 56% on mAP measurement scores with the IIIT-AR-13K dataset and the UIT-DODV dataset, respectively.","PeriodicalId":296963,"journal":{"name":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"56 80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Page Object Detection with YOLOF\",\"authors\":\"Phuc Nguyen, Luu Ngo, Thang Truong, Trong-Thuan Nguyen, Nguyen D. Vo, Khang Nguyen\",\"doi\":\"10.1109/NICS54270.2021.9701449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of information and technology, document digitization has become more critical in many research fields by giving enormous amounts of data. However, computers can not handle a lot of information contained inside physical documents. For that reason, making computers detect objects in document images can help humans have more valuable information such as graphs, captions, or tables. There should be a system capable of detecting various components on document images, especially finding a simply effective object recognition method. Thus, the introduction of YOLOF can be an appropriate method to detect objects in documents because it opens up a simple way to exploit image features, making the object detection problem less computationally intensive, but still maintaining the appropriate accuracy. This paper evaluates the new one-stage YOLOF method on two challenging document datasets: IIIT-AR-13K, UIT-DODV. Our experimental YOLOF model achieves 58.8% and 56% on mAP measurement scores with the IIIT-AR-13K dataset and the UIT-DODV dataset, respectively.\",\"PeriodicalId\":296963,\"journal\":{\"name\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"56 80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS54270.2021.9701449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS54270.2021.9701449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着信息技术的飞速发展,文献数字化提供了海量的数据,在许多研究领域显得尤为重要。然而,计算机不能处理物理文档中包含的大量信息。因此,让计算机检测文档图像中的对象可以帮助人类获得更有价值的信息,如图形、说明文字或表格。应该有一个能够检测文档图像上各种成分的系统,特别是找到一种简单有效的对象识别方法。因此,引入YOLOF可以作为一种合适的方法来检测文档中的对象,因为它开辟了一种简单的方法来利用图像特征,使对象检测问题的计算量减少,但仍然保持适当的精度。本文在IIIT-AR-13K、UIT-DODV两个具有挑战性的文档数据集上对新的一阶段YOLOF方法进行了评估。我们的实验YOLOF模型在IIIT-AR-13K数据集和UIT-DODV数据集上的mAP测量得分分别达到58.8%和56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Page Object Detection with YOLOF
With the rapid development of information and technology, document digitization has become more critical in many research fields by giving enormous amounts of data. However, computers can not handle a lot of information contained inside physical documents. For that reason, making computers detect objects in document images can help humans have more valuable information such as graphs, captions, or tables. There should be a system capable of detecting various components on document images, especially finding a simply effective object recognition method. Thus, the introduction of YOLOF can be an appropriate method to detect objects in documents because it opens up a simple way to exploit image features, making the object detection problem less computationally intensive, but still maintaining the appropriate accuracy. This paper evaluates the new one-stage YOLOF method on two challenging document datasets: IIIT-AR-13K, UIT-DODV. Our experimental YOLOF model achieves 58.8% and 56% on mAP measurement scores with the IIIT-AR-13K dataset and the UIT-DODV dataset, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信