假新闻分类的特征选择

Simen Sverdrup-Thygeson, P. Haddow
{"title":"假新闻分类的特征选择","authors":"Simen Sverdrup-Thygeson, P. Haddow","doi":"10.1109/SSCI50451.2021.9660080","DOIUrl":null,"url":null,"abstract":"An explosive growth of misleading and untrustworthy news articles has been observed over the last years. These news articles are often referred to as fake news and have been found to severely impact fair elections and democratic values. Computational Intelligence models may be applied to the classification of news articles, assuming that an efficient feature set is available as input to the model. However, the selection of appropriate feature sets is an open question for such high-dimensional tasks. A further challenge is the general applicability of feature selection strategies, where testing on a single dataset may convey misleading results. The work herein evaluates a wide-range of potential news article features resulting in twenty-five potential features. Feature selection, based on a combination of feature scoring, feature ranking and mutual information is then applied, evaluated on multiple datasets: Kaggle, Liar and FakeNewsNet. An Artificial Immune System model is applied in the feature ranking and as the classification model. The accuracy obtained is compared to state of the art fake news classification models, highlighting that the approach shows promise in terms of accuracy despite the small feature sets provided for classification.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Selection for Fake News Classification\",\"authors\":\"Simen Sverdrup-Thygeson, P. Haddow\",\"doi\":\"10.1109/SSCI50451.2021.9660080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An explosive growth of misleading and untrustworthy news articles has been observed over the last years. These news articles are often referred to as fake news and have been found to severely impact fair elections and democratic values. Computational Intelligence models may be applied to the classification of news articles, assuming that an efficient feature set is available as input to the model. However, the selection of appropriate feature sets is an open question for such high-dimensional tasks. A further challenge is the general applicability of feature selection strategies, where testing on a single dataset may convey misleading results. The work herein evaluates a wide-range of potential news article features resulting in twenty-five potential features. Feature selection, based on a combination of feature scoring, feature ranking and mutual information is then applied, evaluated on multiple datasets: Kaggle, Liar and FakeNewsNet. An Artificial Immune System model is applied in the feature ranking and as the classification model. The accuracy obtained is compared to state of the art fake news classification models, highlighting that the approach shows promise in terms of accuracy despite the small feature sets provided for classification.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9660080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,误导性和不可信的新闻文章呈爆炸式增长。这些新闻文章通常被称为假新闻,并被发现严重影响公平选举和民主价值观。假设一个有效的特征集可以作为模型的输入,计算智能模型可以应用于新闻文章的分类。然而,对于这样的高维任务,选择合适的特征集是一个悬而未决的问题。进一步的挑战是特征选择策略的普遍适用性,在单个数据集上进行测试可能会传达误导性的结果。本文的工作评估了广泛的潜在新闻文章特征,产生了25个潜在特征。特征选择是基于特征评分、特征排序和互信息的组合,然后在多个数据集上进行评估:Kaggle、Liar和FakeNewsNet。采用人工免疫系统模型对特征进行排序,并作为分类模型。将获得的准确性与最先进的假新闻分类模型进行比较,强调该方法在准确性方面显示出希望,尽管为分类提供的特征集很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Selection for Fake News Classification
An explosive growth of misleading and untrustworthy news articles has been observed over the last years. These news articles are often referred to as fake news and have been found to severely impact fair elections and democratic values. Computational Intelligence models may be applied to the classification of news articles, assuming that an efficient feature set is available as input to the model. However, the selection of appropriate feature sets is an open question for such high-dimensional tasks. A further challenge is the general applicability of feature selection strategies, where testing on a single dataset may convey misleading results. The work herein evaluates a wide-range of potential news article features resulting in twenty-five potential features. Feature selection, based on a combination of feature scoring, feature ranking and mutual information is then applied, evaluated on multiple datasets: Kaggle, Liar and FakeNewsNet. An Artificial Immune System model is applied in the feature ranking and as the classification model. The accuracy obtained is compared to state of the art fake news classification models, highlighting that the approach shows promise in terms of accuracy despite the small feature sets provided for classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信