{"title":"坩埚:走向统一的安全在线和离线分析的规模","authors":"Peter Coetzee, S. Jarvis","doi":"10.1145/2534645.2534649","DOIUrl":null,"url":null,"abstract":"The burgeoning field of data science benefits from the application of a variety of analytic models and techniques to the oft-cited problems of large volume, high velocity data rates, and significant variety in data structure and semantics. Many approaches make use of common analytic techniques in either a streaming or batch processing paradigm.\n This paper presents progress in developing a framework for the analysis of large-scale datasets using both of these pools of techniques in a unified manner. This includes: (1) a Domain Specific Language (DSL) for describing analyses as a set of Communicating Sequential Processes, fully integrated with the Java type system, including an Integrated Development Environment (IDE) and a compiler which builds idiomatic Java; (2) a runtime model for execution of an analytic in both streaming and batch environments; and (3) a novel approach to automated management of cell-level security labels, applied uniformly across all runtimes.\n The paper concludes with a demonstration of the successful use of this system with a sample workload developed in (1), and an analysis of the performance characteristics of each of the runtimes described in (2).","PeriodicalId":166804,"journal":{"name":"International Symposium on Design and Implementation of Symbolic Computation Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CRUCIBLE: towards unified secure on- and off-line analytics at scale\",\"authors\":\"Peter Coetzee, S. Jarvis\",\"doi\":\"10.1145/2534645.2534649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The burgeoning field of data science benefits from the application of a variety of analytic models and techniques to the oft-cited problems of large volume, high velocity data rates, and significant variety in data structure and semantics. Many approaches make use of common analytic techniques in either a streaming or batch processing paradigm.\\n This paper presents progress in developing a framework for the analysis of large-scale datasets using both of these pools of techniques in a unified manner. This includes: (1) a Domain Specific Language (DSL) for describing analyses as a set of Communicating Sequential Processes, fully integrated with the Java type system, including an Integrated Development Environment (IDE) and a compiler which builds idiomatic Java; (2) a runtime model for execution of an analytic in both streaming and batch environments; and (3) a novel approach to automated management of cell-level security labels, applied uniformly across all runtimes.\\n The paper concludes with a demonstration of the successful use of this system with a sample workload developed in (1), and an analysis of the performance characteristics of each of the runtimes described in (2).\",\"PeriodicalId\":166804,\"journal\":{\"name\":\"International Symposium on Design and Implementation of Symbolic Computation Systems\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Design and Implementation of Symbolic Computation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2534645.2534649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Design and Implementation of Symbolic Computation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534645.2534649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CRUCIBLE: towards unified secure on- and off-line analytics at scale
The burgeoning field of data science benefits from the application of a variety of analytic models and techniques to the oft-cited problems of large volume, high velocity data rates, and significant variety in data structure and semantics. Many approaches make use of common analytic techniques in either a streaming or batch processing paradigm.
This paper presents progress in developing a framework for the analysis of large-scale datasets using both of these pools of techniques in a unified manner. This includes: (1) a Domain Specific Language (DSL) for describing analyses as a set of Communicating Sequential Processes, fully integrated with the Java type system, including an Integrated Development Environment (IDE) and a compiler which builds idiomatic Java; (2) a runtime model for execution of an analytic in both streaming and batch environments; and (3) a novel approach to automated management of cell-level security labels, applied uniformly across all runtimes.
The paper concludes with a demonstration of the successful use of this system with a sample workload developed in (1), and an analysis of the performance characteristics of each of the runtimes described in (2).