H. Iida, Y. Shoji, S. Sugawara, T. Kinoshita, Y. Tamura, Y. Narita, S. Eberl
{"title":"心肌/sup 201/Tl SPECT定量系统的设计与实验验证","authors":"H. Iida, Y. Shoji, S. Sugawara, T. Kinoshita, Y. Tamura, Y. Narita, S. Eberl","doi":"10.1109/NSSMIC.1998.773914","DOIUrl":null,"url":null,"abstract":"We have developed a quantitative SPECT system, and evaluated its potential for quantitative assessment of bio-physiological functions in the myocardium particularly with /sup 201/Tl. Our approach included development of a transmission system that provides accurate attenuation /spl mu/ maps, and implementation of ordered-subset EM reconstruction with transmission data based attenuation correction in addition to scatter correction using the transmission-dependent convolution subtraction (TDCS) technique. The transmission system was designed using Monte Carlo simulation to minimize the scatter in the transmission projection data while keeping loss of sensitivity minimal, and was attached to an opposing 2-head gamma camera fitted with parallel beam collimators. Observed /spl mu/ values agreed quantitatively well with the theoretical expected values in both phantoms and human thorax. Phantom experiments with /sup 201/Tl also demonstrated that, with both corrections for attenuation and scatter, observed images were directly proportional to the actual radioactivity distribution for various phantom geometries. Attenuation correction without scatter correction improved images in deep structure, but resulted in significant artifacts in the chest phantom in addition to dependency of observed radioactivity concentrations on the diameter of cylindrical phantoms. Absolute quantitation of bio-physiological functions, which is well established in PET, is shown to be feasible using SPECT, if both quantitative attenuation and scatter corrections are employed.","PeriodicalId":129202,"journal":{"name":"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)","volume":"1667 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Design and experimental validation of a quantitative myocardial /sup 201/Tl SPECT system\",\"authors\":\"H. Iida, Y. Shoji, S. Sugawara, T. Kinoshita, Y. Tamura, Y. Narita, S. Eberl\",\"doi\":\"10.1109/NSSMIC.1998.773914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a quantitative SPECT system, and evaluated its potential for quantitative assessment of bio-physiological functions in the myocardium particularly with /sup 201/Tl. Our approach included development of a transmission system that provides accurate attenuation /spl mu/ maps, and implementation of ordered-subset EM reconstruction with transmission data based attenuation correction in addition to scatter correction using the transmission-dependent convolution subtraction (TDCS) technique. The transmission system was designed using Monte Carlo simulation to minimize the scatter in the transmission projection data while keeping loss of sensitivity minimal, and was attached to an opposing 2-head gamma camera fitted with parallel beam collimators. Observed /spl mu/ values agreed quantitatively well with the theoretical expected values in both phantoms and human thorax. Phantom experiments with /sup 201/Tl also demonstrated that, with both corrections for attenuation and scatter, observed images were directly proportional to the actual radioactivity distribution for various phantom geometries. Attenuation correction without scatter correction improved images in deep structure, but resulted in significant artifacts in the chest phantom in addition to dependency of observed radioactivity concentrations on the diameter of cylindrical phantoms. Absolute quantitation of bio-physiological functions, which is well established in PET, is shown to be feasible using SPECT, if both quantitative attenuation and scatter corrections are employed.\",\"PeriodicalId\":129202,\"journal\":{\"name\":\"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)\",\"volume\":\"1667 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.1998.773914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1998.773914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and experimental validation of a quantitative myocardial /sup 201/Tl SPECT system
We have developed a quantitative SPECT system, and evaluated its potential for quantitative assessment of bio-physiological functions in the myocardium particularly with /sup 201/Tl. Our approach included development of a transmission system that provides accurate attenuation /spl mu/ maps, and implementation of ordered-subset EM reconstruction with transmission data based attenuation correction in addition to scatter correction using the transmission-dependent convolution subtraction (TDCS) technique. The transmission system was designed using Monte Carlo simulation to minimize the scatter in the transmission projection data while keeping loss of sensitivity minimal, and was attached to an opposing 2-head gamma camera fitted with parallel beam collimators. Observed /spl mu/ values agreed quantitatively well with the theoretical expected values in both phantoms and human thorax. Phantom experiments with /sup 201/Tl also demonstrated that, with both corrections for attenuation and scatter, observed images were directly proportional to the actual radioactivity distribution for various phantom geometries. Attenuation correction without scatter correction improved images in deep structure, but resulted in significant artifacts in the chest phantom in addition to dependency of observed radioactivity concentrations on the diameter of cylindrical phantoms. Absolute quantitation of bio-physiological functions, which is well established in PET, is shown to be feasible using SPECT, if both quantitative attenuation and scatter corrections are employed.