正则链的交叉多重度计算

Ryan Sandford, J. Gerhard, Marc Moreno Maza
{"title":"正则链的交叉多重度计算","authors":"Ryan Sandford, J. Gerhard, Marc Moreno Maza","doi":"10.5206/mt.v2i1.14463","DOIUrl":null,"url":null,"abstract":"We extend a generalization of Fulton’s intersection multiplicity algorithm to handle zero-dimensional regular chains as input, allowing the generalization of Fulton’s algorithm to compute intersection multiplicities at points containing non-rational coordinates. Moreover, we describe the implementation of this extension in Maple, and show that the range of input systems for which intersection multiplicities can be computed has increased substantially from existing standard basis free intersection multiplicity algorithm available in Maple. Lastly, we show our implementation of the generalization of Fulton’s algorithm often outperforms the existing standard basis free intersection multiplicity algorithm, typically by one to two orders of magnitude.","PeriodicalId":355724,"journal":{"name":"Maple Transactions","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Intersection Multiplicities with Regular Chains\",\"authors\":\"Ryan Sandford, J. Gerhard, Marc Moreno Maza\",\"doi\":\"10.5206/mt.v2i1.14463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend a generalization of Fulton’s intersection multiplicity algorithm to handle zero-dimensional regular chains as input, allowing the generalization of Fulton’s algorithm to compute intersection multiplicities at points containing non-rational coordinates. Moreover, we describe the implementation of this extension in Maple, and show that the range of input systems for which intersection multiplicities can be computed has increased substantially from existing standard basis free intersection multiplicity algorithm available in Maple. Lastly, we show our implementation of the generalization of Fulton’s algorithm often outperforms the existing standard basis free intersection multiplicity algorithm, typically by one to two orders of magnitude.\",\"PeriodicalId\":355724,\"journal\":{\"name\":\"Maple Transactions\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maple Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mt.v2i1.14463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maple Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mt.v2i1.14463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们扩展了富尔顿的交集多重算法的推广,以处理零维规则链作为输入,允许富尔顿算法的推广计算在包含非理性坐标的点上的交集多重。此外,我们描述了该扩展在Maple中的实现,并表明可以计算交集多重性的输入系统的范围比Maple中现有的标准基自由交集多重性算法大大增加。最后,我们展示了我们实现的富尔顿算法的泛化通常优于现有的标准基自由交叉多重算法,通常高出一到两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Intersection Multiplicities with Regular Chains
We extend a generalization of Fulton’s intersection multiplicity algorithm to handle zero-dimensional regular chains as input, allowing the generalization of Fulton’s algorithm to compute intersection multiplicities at points containing non-rational coordinates. Moreover, we describe the implementation of this extension in Maple, and show that the range of input systems for which intersection multiplicities can be computed has increased substantially from existing standard basis free intersection multiplicity algorithm available in Maple. Lastly, we show our implementation of the generalization of Fulton’s algorithm often outperforms the existing standard basis free intersection multiplicity algorithm, typically by one to two orders of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信