为什么蜂群最适合多查询优化?

Sayed AbdelGaber, M. Abdel-Fattah, S. Nasr
{"title":"为什么蜂群最适合多查询优化?","authors":"Sayed AbdelGaber, M. Abdel-Fattah, S. Nasr","doi":"10.1109/icci54321.2022.9756086","DOIUrl":null,"url":null,"abstract":"This paper presents the comparison results on the performance of the swarm algorithms with Multi-Query Optimization (MQO). First the paper discusses query optimization process and the challenges appear when applied on multi query. Then the paper tackles swarm algorithms and how did they confront these challenges and achieve good results. Finally, proved that Artificial Bee Colony (ABC) algorithm achieves the best results in time and performance.","PeriodicalId":122550,"journal":{"name":"2022 5th International Conference on Computing and Informatics (ICCI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why Bee colony is the most suitable with multi-query optimization?\",\"authors\":\"Sayed AbdelGaber, M. Abdel-Fattah, S. Nasr\",\"doi\":\"10.1109/icci54321.2022.9756086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the comparison results on the performance of the swarm algorithms with Multi-Query Optimization (MQO). First the paper discusses query optimization process and the challenges appear when applied on multi query. Then the paper tackles swarm algorithms and how did they confront these challenges and achieve good results. Finally, proved that Artificial Bee Colony (ABC) algorithm achieves the best results in time and performance.\",\"PeriodicalId\":122550,\"journal\":{\"name\":\"2022 5th International Conference on Computing and Informatics (ICCI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Computing and Informatics (ICCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icci54321.2022.9756086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Computing and Informatics (ICCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icci54321.2022.9756086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了基于多查询优化(MQO)的群算法的性能比较结果。本文首先讨论了查询优化的过程和应用于多查询时所面临的挑战。然后,本文讨论了群算法,以及它们如何面对这些挑战并取得良好的结果。最后证明了人工蜂群(ABC)算法在时间和性能上都达到了最佳效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why Bee colony is the most suitable with multi-query optimization?
This paper presents the comparison results on the performance of the swarm algorithms with Multi-Query Optimization (MQO). First the paper discusses query optimization process and the challenges appear when applied on multi query. Then the paper tackles swarm algorithms and how did they confront these challenges and achieve good results. Finally, proved that Artificial Bee Colony (ABC) algorithm achieves the best results in time and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信