使用多个领域知识学习特定于领域和独立于领域的面向意见的词汇

K. S. Vishnu, T. Apoorva, Deepa Gupta
{"title":"使用多个领域知识学习特定于领域和独立于领域的面向意见的词汇","authors":"K. S. Vishnu, T. Apoorva, Deepa Gupta","doi":"10.1109/IC3.2014.6897193","DOIUrl":null,"url":null,"abstract":"Sentiment analysis systems are used to know the opinions of customer reviews. The basic resource for the sentiment analysis systems are polarity lexicon. Each term in polarity lexicon indicates its affinity towards positive or negative opinion. However, this affinity of word changes with the change in domain. In this work, we explore a polarity lexicon using SentiWordNet, a domain independent lexicon to adapt specific domain and update the domain independent lexicon based on multiple domain knowledge. The proposed approach has been tested on five domains: Health, Books, Camera, Music and DVD. The improvement in accuracy ranges from 4.5 to 19 pointsacross all the domains over baseline.","PeriodicalId":444918,"journal":{"name":"2014 Seventh International Conference on Contemporary Computing (IC3)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Learning domain-specific and domain-independent opinion oriented lexicons using multiple domain knowledge\",\"authors\":\"K. S. Vishnu, T. Apoorva, Deepa Gupta\",\"doi\":\"10.1109/IC3.2014.6897193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis systems are used to know the opinions of customer reviews. The basic resource for the sentiment analysis systems are polarity lexicon. Each term in polarity lexicon indicates its affinity towards positive or negative opinion. However, this affinity of word changes with the change in domain. In this work, we explore a polarity lexicon using SentiWordNet, a domain independent lexicon to adapt specific domain and update the domain independent lexicon based on multiple domain knowledge. The proposed approach has been tested on five domains: Health, Books, Camera, Music and DVD. The improvement in accuracy ranges from 4.5 to 19 pointsacross all the domains over baseline.\",\"PeriodicalId\":444918,\"journal\":{\"name\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2014.6897193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2014.6897193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

情感分析系统用于了解客户评论的意见。情感分析系统的基本资源是极性词汇。极性词汇中的每一个词都表明了它对积极或消极观点的亲和力。然而,词的这种亲和力随着领域的变化而变化。在这项工作中,我们利用SentiWordNet探索了一个极性词典,这是一个基于多领域知识的领域独立词典,可以适应特定的领域并更新领域独立词典。所提出的方法已经在五个领域进行了测试:健康、书籍、相机、音乐和DVD。与基线相比,所有领域的准确度提高了4.5到19个点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning domain-specific and domain-independent opinion oriented lexicons using multiple domain knowledge
Sentiment analysis systems are used to know the opinions of customer reviews. The basic resource for the sentiment analysis systems are polarity lexicon. Each term in polarity lexicon indicates its affinity towards positive or negative opinion. However, this affinity of word changes with the change in domain. In this work, we explore a polarity lexicon using SentiWordNet, a domain independent lexicon to adapt specific domain and update the domain independent lexicon based on multiple domain knowledge. The proposed approach has been tested on five domains: Health, Books, Camera, Music and DVD. The improvement in accuracy ranges from 4.5 to 19 pointsacross all the domains over baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信