基于后期融合和降维的人体动作识别

Haiyan Xu, Qian Tian, Zhen Wang, Jianhui Wu
{"title":"基于后期融合和降维的人体动作识别","authors":"Haiyan Xu, Qian Tian, Zhen Wang, Jianhui Wu","doi":"10.1109/ICDSP.2014.6900787","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of action recognition. We introduce local feature representations which are HOG, HOF, MBH, trajectory descriptor based on paper [1]. We extract those features only used one scale while Wang's paper has eight spatial scales. Our method can save memory and computation cost while guarantee the accuracy. Firstly, we apply a PCA on the HOG, HOF, MBH, trajectory descriptors to reduce the number of features. Secondly, we use Fisher kernel (FK) to aggregate each descriptor into a Fisher vector (FV) or vector of locally aggregated descriptors (VLAD) and then use improved LDA technique for FV or VLAD before being fed into the linear SVM. Thirdly, we apply late fusion for all kinds of descriptors. We evaluate our descriptor on the KTH and Youtube dataset, and as a result, observe improved performance in terms of mean average precise (mAP). Our method not only significantly reduces computational cost but improves accuracy.","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Human action recognition using late fusion and dimensionality reduction\",\"authors\":\"Haiyan Xu, Qian Tian, Zhen Wang, Jianhui Wu\",\"doi\":\"10.1109/ICDSP.2014.6900787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of action recognition. We introduce local feature representations which are HOG, HOF, MBH, trajectory descriptor based on paper [1]. We extract those features only used one scale while Wang's paper has eight spatial scales. Our method can save memory and computation cost while guarantee the accuracy. Firstly, we apply a PCA on the HOG, HOF, MBH, trajectory descriptors to reduce the number of features. Secondly, we use Fisher kernel (FK) to aggregate each descriptor into a Fisher vector (FV) or vector of locally aggregated descriptors (VLAD) and then use improved LDA technique for FV or VLAD before being fed into the linear SVM. Thirdly, we apply late fusion for all kinds of descriptors. We evaluate our descriptor on the KTH and Youtube dataset, and as a result, observe improved performance in terms of mean average precise (mAP). Our method not only significantly reduces computational cost but improves accuracy.\",\"PeriodicalId\":301856,\"journal\":{\"name\":\"2014 19th International Conference on Digital Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 19th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2014.6900787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了动作识别问题。在论文[1]的基础上引入了HOG、HOF、MBH、轨迹描述子等局部特征表示。我们只使用一个尺度提取这些特征,而Wang的论文有八个空间尺度。该方法在保证精度的同时,节省了内存和计算成本。首先,对HOG、HOF、MBH、轨迹描述符进行主成分分析,减少特征数量;其次,我们使用Fisher核(FK)将每个描述符聚合成Fisher向量(FV)或局部聚合描述符向量(VLAD),然后在将其馈入线性支持向量机之前对FV或VLAD使用改进的LDA技术。第三,对各种描述符进行后期融合。我们在KTH和Youtube数据集上评估我们的描述符,结果,在平均精度(mAP)方面观察到改进的性能。该方法不仅大大降低了计算成本,而且提高了计算精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human action recognition using late fusion and dimensionality reduction
This paper addresses the problem of action recognition. We introduce local feature representations which are HOG, HOF, MBH, trajectory descriptor based on paper [1]. We extract those features only used one scale while Wang's paper has eight spatial scales. Our method can save memory and computation cost while guarantee the accuracy. Firstly, we apply a PCA on the HOG, HOF, MBH, trajectory descriptors to reduce the number of features. Secondly, we use Fisher kernel (FK) to aggregate each descriptor into a Fisher vector (FV) or vector of locally aggregated descriptors (VLAD) and then use improved LDA technique for FV or VLAD before being fed into the linear SVM. Thirdly, we apply late fusion for all kinds of descriptors. We evaluate our descriptor on the KTH and Youtube dataset, and as a result, observe improved performance in terms of mean average precise (mAP). Our method not only significantly reduces computational cost but improves accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信