基于遗传算法BP神经网络的摄像机标定研究

Hengfeng Yao, Zhibin Zhang
{"title":"基于遗传算法BP神经网络的摄像机标定研究","authors":"Hengfeng Yao, Zhibin Zhang","doi":"10.1109/ICINFA.2016.7831849","DOIUrl":null,"url":null,"abstract":"Camera calibration is necessary in machine vision application field. Calibration model has nonlinear characteristics, and establishment of mathematical model is often a complicated process, but neural network can solve the complex nonlinear problem effectively, neural network has strong nonlinear approximation ability, adaptive network parameters and fast learning. This paper presents a neurocalibration approach about camera calibration based on back propagation (BP) neural network optimized by genetic algorithm (GA), GA can optimize net parameters about connection weights and threshold values. Making a comprehensive comparison between GA-BP neural network and BP neural network. The experimental results show that the GA-BP neurocalibration can be effective and feasible by this way.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Research of camera calibration based on genetic algorithm BP neural network\",\"authors\":\"Hengfeng Yao, Zhibin Zhang\",\"doi\":\"10.1109/ICINFA.2016.7831849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Camera calibration is necessary in machine vision application field. Calibration model has nonlinear characteristics, and establishment of mathematical model is often a complicated process, but neural network can solve the complex nonlinear problem effectively, neural network has strong nonlinear approximation ability, adaptive network parameters and fast learning. This paper presents a neurocalibration approach about camera calibration based on back propagation (BP) neural network optimized by genetic algorithm (GA), GA can optimize net parameters about connection weights and threshold values. Making a comprehensive comparison between GA-BP neural network and BP neural network. The experimental results show that the GA-BP neurocalibration can be effective and feasible by this way.\",\"PeriodicalId\":389619,\"journal\":{\"name\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2016.7831849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7831849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

摄像机标定是机器视觉应用领域中必不可少的环节。校正模型具有非线性特性,数学模型的建立往往是一个复杂的过程,而神经网络可以有效地解决复杂的非线性问题,神经网络具有较强的非线性逼近能力、自适应网络参数和快速学习等特点。提出了一种基于遗传算法(GA)优化的BP神经网络的摄像机标定方法,遗传算法可以优化连接权值和阈值等网络参数。对GA-BP神经网络和BP神经网络进行了综合比较。实验结果表明,采用该方法进行GA-BP神经标定是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of camera calibration based on genetic algorithm BP neural network
Camera calibration is necessary in machine vision application field. Calibration model has nonlinear characteristics, and establishment of mathematical model is often a complicated process, but neural network can solve the complex nonlinear problem effectively, neural network has strong nonlinear approximation ability, adaptive network parameters and fast learning. This paper presents a neurocalibration approach about camera calibration based on back propagation (BP) neural network optimized by genetic algorithm (GA), GA can optimize net parameters about connection weights and threshold values. Making a comprehensive comparison between GA-BP neural network and BP neural network. The experimental results show that the GA-BP neurocalibration can be effective and feasible by this way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信