{"title":"Milnor运算与广义陈氏特征","authors":"T. Torii","doi":"10.2140/gtm.2007.10.383","DOIUrl":null,"url":null,"abstract":"We have shown that the n‐th Morava K ‐theory K .X/ for a CW‐spectrum X with action of Morava stabilizer group Gn can be recovered from the system of some height‐.nC 1/ cohomology groups E .Z/ with GnC1 ‐action indexed by finite subspectra Z . In this note we reformulate and extend the above result. We construct a symmetric monoidal functor F from the category of E _ .E/‐precomodules to the category of K .K/‐comodules. Then we show that K .X/ is naturally isomorphic to the inverse limit of F.E .Z// as a K .K/‐comodule. 55N22; 55N20, 55S05 Dedicated to Professor Nishida on the occasion of his 60th birthday","PeriodicalId":115248,"journal":{"name":"Geometry and Topology Monographs","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Milnor operations and the generalized Chern character\",\"authors\":\"T. Torii\",\"doi\":\"10.2140/gtm.2007.10.383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have shown that the n‐th Morava K ‐theory K .X/ for a CW‐spectrum X with action of Morava stabilizer group Gn can be recovered from the system of some height‐.nC 1/ cohomology groups E .Z/ with GnC1 ‐action indexed by finite subspectra Z . In this note we reformulate and extend the above result. We construct a symmetric monoidal functor F from the category of E _ .E/‐precomodules to the category of K .K/‐comodules. Then we show that K .X/ is naturally isomorphic to the inverse limit of F.E .Z// as a K .K/‐comodule. 55N22; 55N20, 55S05 Dedicated to Professor Nishida on the occasion of his 60th birthday\",\"PeriodicalId\":115248,\"journal\":{\"name\":\"Geometry and Topology Monographs\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry and Topology Monographs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gtm.2007.10.383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry and Topology Monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gtm.2007.10.383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
我们已经证明了具有Morava稳定剂群Gn作用的CW -谱X的第n次Morava K -理论K .X/可以从一定高度的系统中恢复。cn1 /上同调群E .Z/与GnC1 -作用的有限子谱Z。在本文中,我们对上述结果进行了重新表述和推广。我们构造了一个从e_ .E/‐预模范畴到K .K/‐模范畴的对称单函子F。然后证明了K . x /作为K .K/‐模与F.E . z //的逆极限是自然同构的。55 n22;55N20, 55S05在西田教授60岁生日之际献给他
Milnor operations and the generalized Chern character
We have shown that the n‐th Morava K ‐theory K .X/ for a CW‐spectrum X with action of Morava stabilizer group Gn can be recovered from the system of some height‐.nC 1/ cohomology groups E .Z/ with GnC1 ‐action indexed by finite subspectra Z . In this note we reformulate and extend the above result. We construct a symmetric monoidal functor F from the category of E _ .E/‐precomodules to the category of K .K/‐comodules. Then we show that K .X/ is naturally isomorphic to the inverse limit of F.E .Z// as a K .K/‐comodule. 55N22; 55N20, 55S05 Dedicated to Professor Nishida on the occasion of his 60th birthday