{"title":"动态社会网络中的增量本地社区识别","authors":"M. Takaffoli, Reihaneh Rabbany, Osmar R Zaiane","doi":"10.1145/2492517.2492633","DOIUrl":null,"url":null,"abstract":"Social networks are usually drawn from the interactions between individuals, and therefore are temporal and dynamic in essence. Examining how the structure of these networks changes over time provides insights into their evolution patterns, factors that trigger the changes, and ultimately predict the future structure of these networks. One of the key structural characteristics of networks is their community structure -groups of densely interconnected nodes. Communities in a dynamic social network span over periods of time and are affected by changes in the underlying population, i.e. they have fluctuating members and can grow and shrink over time. In this paper, we introduce a new incremental community mining approach, in which communities in the current time are obtained based on the communities from the past time frame. Compared to previous independent approaches, this incremental approach is more effective at detecting stable communities over time. Extensive experimental studies on real datasets, demonstrate the applicability, effectiveness, and soundness of our proposed framework.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Incremental local community identification in dynamic social networks\",\"authors\":\"M. Takaffoli, Reihaneh Rabbany, Osmar R Zaiane\",\"doi\":\"10.1145/2492517.2492633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networks are usually drawn from the interactions between individuals, and therefore are temporal and dynamic in essence. Examining how the structure of these networks changes over time provides insights into their evolution patterns, factors that trigger the changes, and ultimately predict the future structure of these networks. One of the key structural characteristics of networks is their community structure -groups of densely interconnected nodes. Communities in a dynamic social network span over periods of time and are affected by changes in the underlying population, i.e. they have fluctuating members and can grow and shrink over time. In this paper, we introduce a new incremental community mining approach, in which communities in the current time are obtained based on the communities from the past time frame. Compared to previous independent approaches, this incremental approach is more effective at detecting stable communities over time. Extensive experimental studies on real datasets, demonstrate the applicability, effectiveness, and soundness of our proposed framework.\",\"PeriodicalId\":442230,\"journal\":{\"name\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492517.2492633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2492633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Incremental local community identification in dynamic social networks
Social networks are usually drawn from the interactions between individuals, and therefore are temporal and dynamic in essence. Examining how the structure of these networks changes over time provides insights into their evolution patterns, factors that trigger the changes, and ultimately predict the future structure of these networks. One of the key structural characteristics of networks is their community structure -groups of densely interconnected nodes. Communities in a dynamic social network span over periods of time and are affected by changes in the underlying population, i.e. they have fluctuating members and can grow and shrink over time. In this paper, we introduce a new incremental community mining approach, in which communities in the current time are obtained based on the communities from the past time frame. Compared to previous independent approaches, this incremental approach is more effective at detecting stable communities over time. Extensive experimental studies on real datasets, demonstrate the applicability, effectiveness, and soundness of our proposed framework.