利用多媒体信号识别增材制造系统中的网络事故

Wei Yang, Jialei Chen, K. Paynabar, Chuck Zhang
{"title":"利用多媒体信号识别增材制造系统中的网络事故","authors":"Wei Yang, Jialei Chen, K. Paynabar, Chuck Zhang","doi":"10.1115/isfa2020-9648","DOIUrl":null,"url":null,"abstract":"\n Additive Manufacturing (AM) is an emerging manufacturing technology that plays a growing role in both industrial and consumer settings. However, security concerns of the AM have been raised among researchers. In this paper, we present an online detection mechanism for the malicious attempts on AM system, which taps into both audios and videos collected during the actual printing process. For audio signals, we propose to monitor the characteristics or patterns in the spectrogram via the Wasserstain metric. For video signals, we present a path reconstruction method which effectively monitors the motion of the printer extruder. We then show the effectiveness of our methods in a case study using Ender 3D printer, where the cyber-incidence of modifying the internal fill density can be easily identified in an online manner.","PeriodicalId":159740,"journal":{"name":"2020 International Symposium on Flexible Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identifying the Cyber-Incidents in Additive Manufacturing Systems via Multimedia Signals\",\"authors\":\"Wei Yang, Jialei Chen, K. Paynabar, Chuck Zhang\",\"doi\":\"10.1115/isfa2020-9648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Additive Manufacturing (AM) is an emerging manufacturing technology that plays a growing role in both industrial and consumer settings. However, security concerns of the AM have been raised among researchers. In this paper, we present an online detection mechanism for the malicious attempts on AM system, which taps into both audios and videos collected during the actual printing process. For audio signals, we propose to monitor the characteristics or patterns in the spectrogram via the Wasserstain metric. For video signals, we present a path reconstruction method which effectively monitors the motion of the printer extruder. We then show the effectiveness of our methods in a case study using Ender 3D printer, where the cyber-incidence of modifying the internal fill density can be easily identified in an online manner.\",\"PeriodicalId\":159740,\"journal\":{\"name\":\"2020 International Symposium on Flexible Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Flexible Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/isfa2020-9648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Flexible Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/isfa2020-9648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

增材制造(AM)是一种新兴的制造技术,在工业和消费环境中发挥着越来越大的作用。然而,研究人员对AM的安全问题提出了担忧。在本文中,我们提出了一种针对AM系统恶意尝试的在线检测机制,该机制利用了在实际打印过程中收集的音频和视频。对于音频信号,我们建议通过Wasserstain度量来监测频谱图中的特征或模式。对于视频信号,我们提出了一种路径重构方法,可以有效地监控打印机挤出机的运动。然后,我们在使用Ender 3D打印机的案例研究中展示了我们方法的有效性,其中修改内部填充密度的网络发生率可以通过在线方式轻松识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying the Cyber-Incidents in Additive Manufacturing Systems via Multimedia Signals
Additive Manufacturing (AM) is an emerging manufacturing technology that plays a growing role in both industrial and consumer settings. However, security concerns of the AM have been raised among researchers. In this paper, we present an online detection mechanism for the malicious attempts on AM system, which taps into both audios and videos collected during the actual printing process. For audio signals, we propose to monitor the characteristics or patterns in the spectrogram via the Wasserstain metric. For video signals, we present a path reconstruction method which effectively monitors the motion of the printer extruder. We then show the effectiveness of our methods in a case study using Ender 3D printer, where the cyber-incidence of modifying the internal fill density can be easily identified in an online manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信