C. Marcelino, E. Wanner, F. V. Martins, J. Pérez-Aracil, S. Jiménez-Fernández, S. Salcedo-Sanz
{"title":"用C-DEEPSO算法求解智能电网有功无功最优调度问题","authors":"C. Marcelino, E. Wanner, F. V. Martins, J. Pérez-Aracil, S. Jiménez-Fernández, S. Salcedo-Sanz","doi":"10.1109/CEC55065.2022.9870385","DOIUrl":null,"url":null,"abstract":"Optimal active–reactive power dispatch problems (OARPD) are considered large scale optimization problems with a high nonlinear complexity. Usually, in OARPD the objective is to minimize the cost of the system operation. In 2018, the IEEE PES committee proposed a competition, the “Operational planning of sustainable power systems”, in which a test bed relating the OARPD and a renewable energy generation challenge within a smart grid was proposed. In this work we consider three test scenarios proposed in that competition. Specifically, we present a hybrid meta-heuristic optimization approach applied to the OARPD, the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO), to tackle these test scenarios. Comparative results with other algorithms such as CMA-ES, EPSO, and CEEPSO indicate that C-DEEPSO shows a competitive performance when solving the OARPD problems.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the Optimal Active–Reactive Power Dispatch Problem in Smart Grids with the C-DEEPSO Algorithm\",\"authors\":\"C. Marcelino, E. Wanner, F. V. Martins, J. Pérez-Aracil, S. Jiménez-Fernández, S. Salcedo-Sanz\",\"doi\":\"10.1109/CEC55065.2022.9870385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal active–reactive power dispatch problems (OARPD) are considered large scale optimization problems with a high nonlinear complexity. Usually, in OARPD the objective is to minimize the cost of the system operation. In 2018, the IEEE PES committee proposed a competition, the “Operational planning of sustainable power systems”, in which a test bed relating the OARPD and a renewable energy generation challenge within a smart grid was proposed. In this work we consider three test scenarios proposed in that competition. Specifically, we present a hybrid meta-heuristic optimization approach applied to the OARPD, the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO), to tackle these test scenarios. Comparative results with other algorithms such as CMA-ES, EPSO, and CEEPSO indicate that C-DEEPSO shows a competitive performance when solving the OARPD problems.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving the Optimal Active–Reactive Power Dispatch Problem in Smart Grids with the C-DEEPSO Algorithm
Optimal active–reactive power dispatch problems (OARPD) are considered large scale optimization problems with a high nonlinear complexity. Usually, in OARPD the objective is to minimize the cost of the system operation. In 2018, the IEEE PES committee proposed a competition, the “Operational planning of sustainable power systems”, in which a test bed relating the OARPD and a renewable energy generation challenge within a smart grid was proposed. In this work we consider three test scenarios proposed in that competition. Specifically, we present a hybrid meta-heuristic optimization approach applied to the OARPD, the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO), to tackle these test scenarios. Comparative results with other algorithms such as CMA-ES, EPSO, and CEEPSO indicate that C-DEEPSO shows a competitive performance when solving the OARPD problems.