对于某些np完全问题,TcS2 = 0 (2n)的时间/空间权衡

R. Schroeppel, A. Shamir
{"title":"对于某些np完全问题,TcS2 = 0 (2n)的时间/空间权衡","authors":"R. Schroeppel, A. Shamir","doi":"10.1109/SFCS.1979.3","DOIUrl":null,"url":null,"abstract":"In this paper we develop a general purpose algorithm that can solve a number of NP-complete problems in time T = O(2n/2) and space S = O(2n/4). The algorithm can be generalized to a family of algorithms whose time and space complexities are related by T¿S2 = O(2n). The problems it can handle are characterized by a few decomposition axioms, and they include knapsack problems, exact satisfiability problems, set covering problems, etc. The new algorithm has a considerable cryptanalytic significance, since it can break the Merkle-Hellman public key cryptosystem whose recommended size is n = 100.","PeriodicalId":311166,"journal":{"name":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A TcS2 = 0 (2n) time/space tradeoff for certain NP-complete problems\",\"authors\":\"R. Schroeppel, A. Shamir\",\"doi\":\"10.1109/SFCS.1979.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop a general purpose algorithm that can solve a number of NP-complete problems in time T = O(2n/2) and space S = O(2n/4). The algorithm can be generalized to a family of algorithms whose time and space complexities are related by T¿S2 = O(2n). The problems it can handle are characterized by a few decomposition axioms, and they include knapsack problems, exact satisfiability problems, set covering problems, etc. The new algorithm has a considerable cryptanalytic significance, since it can break the Merkle-Hellman public key cryptosystem whose recommended size is n = 100.\",\"PeriodicalId\":311166,\"journal\":{\"name\":\"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1979.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1979.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本文提出了一种通用算法,该算法可以在时间T = O(2n/2)和空间S = O(2n/4)中求解一些np完全问题。该算法可以推广到时间和空间复杂度由T¿S2 = O(2n)相关的一类算法。它所能处理的问题有几个分解公理,它们包括背包问题、精确可满足问题、集覆盖问题等。新算法可以破解推荐大小为n = 100的Merkle-Hellman公钥密码系统,具有相当大的密码分析意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A TcS2 = 0 (2n) time/space tradeoff for certain NP-complete problems
In this paper we develop a general purpose algorithm that can solve a number of NP-complete problems in time T = O(2n/2) and space S = O(2n/4). The algorithm can be generalized to a family of algorithms whose time and space complexities are related by T¿S2 = O(2n). The problems it can handle are characterized by a few decomposition axioms, and they include knapsack problems, exact satisfiability problems, set covering problems, etc. The new algorithm has a considerable cryptanalytic significance, since it can break the Merkle-Hellman public key cryptosystem whose recommended size is n = 100.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信