基于关键帧提取的模糊视频摘要

Aditi Kapoor, K. K. Biswas, M. Hanmandlu
{"title":"基于关键帧提取的模糊视频摘要","authors":"Aditi Kapoor, K. K. Biswas, M. Hanmandlu","doi":"10.1109/NCVPRIPG.2013.6776235","DOIUrl":null,"url":null,"abstract":"In this paper we propose to summarize videos based on key frames. We improve upon the histogram and pixel difference based approach with fuzzy rule based approach and also give a new approach which reduces the computation of framewise differences. We test our methods using fidelity ratio and compression ratio on videos of sports from YouTube and UCF sports dataset, videos of commercials and sitcoms. The results of our methods are seen to be comparable to other state of the art approaches.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy video summarization using key frame extraction\",\"authors\":\"Aditi Kapoor, K. K. Biswas, M. Hanmandlu\",\"doi\":\"10.1109/NCVPRIPG.2013.6776235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose to summarize videos based on key frames. We improve upon the histogram and pixel difference based approach with fuzzy rule based approach and also give a new approach which reduces the computation of framewise differences. We test our methods using fidelity ratio and compression ratio on videos of sports from YouTube and UCF sports dataset, videos of commercials and sitcoms. The results of our methods are seen to be comparable to other state of the art approaches.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于关键帧的视频总结方法。我们将基于直方图和像素差的方法改进为基于模糊规则的方法,并提出了一种减少帧间差计算的新方法。我们使用来自YouTube和UCF体育数据集的体育视频、商业视频和情景喜剧视频的保真度比和压缩比来测试我们的方法。我们的方法的结果被认为可以与其他最先进的方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy video summarization using key frame extraction
In this paper we propose to summarize videos based on key frames. We improve upon the histogram and pixel difference based approach with fuzzy rule based approach and also give a new approach which reduces the computation of framewise differences. We test our methods using fidelity ratio and compression ratio on videos of sports from YouTube and UCF sports dataset, videos of commercials and sitcoms. The results of our methods are seen to be comparable to other state of the art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信