{"title":"仅使用头戴式显示器实时识别原位身体动作和头部手势","authors":"Jingbo Zhao, Mingjun Shao, Yaojun Wang, Ruolin Xu","doi":"10.1109/VR55154.2023.00026","DOIUrl":null,"url":null,"abstract":"Body actions and head gestures are natural interfaces for interaction in virtual environments. Existing methods for in-place body action recognition often require hardware more than a head-mounted display (HMD), making body action interfaces difficult to be introduced to ordinary virtual reality (VR) users as they usually only possess an HMD. In addition, there lacks a unified solution to recognize in-place body actions and head gestures. This potentially hinders the exploration of the use of in-place body actions and head gestures for novel interaction experiences in virtual environments. We present a unified two-stream 1-D convolutional neural network (CNN) for recognition of body actions when a user performs walking-in-place (WIP) and for recognition of head gestures when a user stands still wearing only an HMD. Compared to previous approaches, our method does not require specialized hardware and/or additional tracking devices other than an HMD and can recognize a significantly larger number of body actions and head gestures than other existing methods. In total, ten in-place body actions and eight head gestures can be recognized with the proposed method, which makes this method a readily available body action interface (head gestures included) for interaction with virtual environments. We demonstrate one utility of the interface through a virtual locomotion task. Results show that the present body action interface is reliable in detecting body actions for the VR locomotion task but is physically demanding compared to a touch controller interface. The present body action interface is promising for new VR experiences and applications, especially for VR fitness applications where workouts are intended.","PeriodicalId":346767,"journal":{"name":"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Recognition of In-Place Body Actions and Head Gestures using Only a Head-Mounted Display\",\"authors\":\"Jingbo Zhao, Mingjun Shao, Yaojun Wang, Ruolin Xu\",\"doi\":\"10.1109/VR55154.2023.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Body actions and head gestures are natural interfaces for interaction in virtual environments. Existing methods for in-place body action recognition often require hardware more than a head-mounted display (HMD), making body action interfaces difficult to be introduced to ordinary virtual reality (VR) users as they usually only possess an HMD. In addition, there lacks a unified solution to recognize in-place body actions and head gestures. This potentially hinders the exploration of the use of in-place body actions and head gestures for novel interaction experiences in virtual environments. We present a unified two-stream 1-D convolutional neural network (CNN) for recognition of body actions when a user performs walking-in-place (WIP) and for recognition of head gestures when a user stands still wearing only an HMD. Compared to previous approaches, our method does not require specialized hardware and/or additional tracking devices other than an HMD and can recognize a significantly larger number of body actions and head gestures than other existing methods. In total, ten in-place body actions and eight head gestures can be recognized with the proposed method, which makes this method a readily available body action interface (head gestures included) for interaction with virtual environments. We demonstrate one utility of the interface through a virtual locomotion task. Results show that the present body action interface is reliable in detecting body actions for the VR locomotion task but is physically demanding compared to a touch controller interface. The present body action interface is promising for new VR experiences and applications, especially for VR fitness applications where workouts are intended.\",\"PeriodicalId\":346767,\"journal\":{\"name\":\"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR55154.2023.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR55154.2023.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Recognition of In-Place Body Actions and Head Gestures using Only a Head-Mounted Display
Body actions and head gestures are natural interfaces for interaction in virtual environments. Existing methods for in-place body action recognition often require hardware more than a head-mounted display (HMD), making body action interfaces difficult to be introduced to ordinary virtual reality (VR) users as they usually only possess an HMD. In addition, there lacks a unified solution to recognize in-place body actions and head gestures. This potentially hinders the exploration of the use of in-place body actions and head gestures for novel interaction experiences in virtual environments. We present a unified two-stream 1-D convolutional neural network (CNN) for recognition of body actions when a user performs walking-in-place (WIP) and for recognition of head gestures when a user stands still wearing only an HMD. Compared to previous approaches, our method does not require specialized hardware and/or additional tracking devices other than an HMD and can recognize a significantly larger number of body actions and head gestures than other existing methods. In total, ten in-place body actions and eight head gestures can be recognized with the proposed method, which makes this method a readily available body action interface (head gestures included) for interaction with virtual environments. We demonstrate one utility of the interface through a virtual locomotion task. Results show that the present body action interface is reliable in detecting body actions for the VR locomotion task but is physically demanding compared to a touch controller interface. The present body action interface is promising for new VR experiences and applications, especially for VR fitness applications where workouts are intended.