使用时空纹理图像对距离和运动进行定性估计

Zhigang Zhu, Guangyou Xu, Dingji Shi
{"title":"使用时空纹理图像对距离和运动进行定性估计","authors":"Zhigang Zhu, Guangyou Xu, Dingji Shi","doi":"10.1109/ICPR.1994.576425","DOIUrl":null,"url":null,"abstract":"In this paper we model the problem of structure from motion as the range estimation with known motion. First, we approximate the motion within a reasonable time interval as a 3D translation and thus some image transformations are applied to convert an arbitrary motion to a 1D translation. Then we analyse the epipolar plane image in the Fourier domain to avoid the feature extraction and correspondence problems. Experimental results with real scene images have shown the efficiency and robustness of the approach.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Qualitative estimations of range and motion using spatio-temporal textural images\",\"authors\":\"Zhigang Zhu, Guangyou Xu, Dingji Shi\",\"doi\":\"10.1109/ICPR.1994.576425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we model the problem of structure from motion as the range estimation with known motion. First, we approximate the motion within a reasonable time interval as a 3D translation and thus some image transformations are applied to convert an arbitrary motion to a 1D translation. Then we analyse the epipolar plane image in the Fourier domain to avoid the feature extraction and correspondence problems. Experimental results with real scene images have shown the efficiency and robustness of the approach.\",\"PeriodicalId\":312019,\"journal\":{\"name\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1994.576425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文将结构的运动问题建模为已知运动条件下的距离估计问题。首先,我们在合理的时间间隔内将运动近似为3D平移,然后应用一些图像变换将任意运动转换为1D平移。然后在傅里叶域中对极平面图像进行分析,避免了特征提取和对应问题。真实场景图像的实验结果表明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative estimations of range and motion using spatio-temporal textural images
In this paper we model the problem of structure from motion as the range estimation with known motion. First, we approximate the motion within a reasonable time interval as a 3D translation and thus some image transformations are applied to convert an arbitrary motion to a 1D translation. Then we analyse the epipolar plane image in the Fourier domain to avoid the feature extraction and correspondence problems. Experimental results with real scene images have shown the efficiency and robustness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信