基于模拟退火的无人机协同目标观测

Beulah Moses, L. Jain
{"title":"基于模拟退火的无人机协同目标观测","authors":"Beulah Moses, L. Jain","doi":"10.1504/IJIDSS.2008.021970","DOIUrl":null,"url":null,"abstract":"Simulated Annealing (SA) is used to solve various combinatorial optimisation problems and local search problems. This paper deals with Cooperative Target Observation (CTO) by groups of Unmanned Aerial Vehicles (UAV). We propose a Modified SA algorithm for optimising the position of each of the UAVs to observe the maximum number of targets. CTO is a very good example of study of multi agent cooperation. We compare with Hill Climbing algorithm and Modified SA algorithm and find that the Modified SA algorithm is superior for almost all target speeds, UAV sensor ranges and various group sizes.","PeriodicalId":311979,"journal":{"name":"Int. J. Intell. Def. Support Syst.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cooperative Target Observation of UAVs using Simulated Annealing\",\"authors\":\"Beulah Moses, L. Jain\",\"doi\":\"10.1504/IJIDSS.2008.021970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulated Annealing (SA) is used to solve various combinatorial optimisation problems and local search problems. This paper deals with Cooperative Target Observation (CTO) by groups of Unmanned Aerial Vehicles (UAV). We propose a Modified SA algorithm for optimising the position of each of the UAVs to observe the maximum number of targets. CTO is a very good example of study of multi agent cooperation. We compare with Hill Climbing algorithm and Modified SA algorithm and find that the Modified SA algorithm is superior for almost all target speeds, UAV sensor ranges and various group sizes.\",\"PeriodicalId\":311979,\"journal\":{\"name\":\"Int. J. Intell. Def. Support Syst.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Def. Support Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJIDSS.2008.021970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Def. Support Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIDSS.2008.021970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

模拟退火(SA)被用于解决各种组合优化问题和局部搜索问题。本文研究了无人机群协同目标观测问题。我们提出了一种改进的SA算法来优化每架无人机的位置,以观察最大数量的目标。CTO是研究多智能体合作的一个很好的例子。通过对爬坡算法和改进SA算法的比较,发现改进SA算法在几乎所有目标速度、无人机传感器距离和各种群体规模下都具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative Target Observation of UAVs using Simulated Annealing
Simulated Annealing (SA) is used to solve various combinatorial optimisation problems and local search problems. This paper deals with Cooperative Target Observation (CTO) by groups of Unmanned Aerial Vehicles (UAV). We propose a Modified SA algorithm for optimising the position of each of the UAVs to observe the maximum number of targets. CTO is a very good example of study of multi agent cooperation. We compare with Hill Climbing algorithm and Modified SA algorithm and find that the Modified SA algorithm is superior for almost all target speeds, UAV sensor ranges and various group sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信