有效的小波时间序列匹配

K. Chan, A. Fu
{"title":"有效的小波时间序列匹配","authors":"K. Chan, A. Fu","doi":"10.1109/ICDE.1999.754915","DOIUrl":null,"url":null,"abstract":"Time series stored as feature vectors can be indexed by multidimensional index trees like R-Trees for fast retrieval. Due to the dimensionality curse problem, transformations are applied to time series to reduce the number of dimensions of the feature vectors. Different transformations like Discrete Fourier Transform (DFT) Discrete Wavelet Transform (DWT), Karhunen-Loeve (KL) transform or Singular Value Decomposition (SVD) can be applied. While the use of DFT and K-L transform or SVD have been studied on the literature, to our knowledge, there is no in-depth study on the application of DWT. In this paper we propose to use Haar Wavelet Transform for time series indexing. The major contributions are: (1) we show that Euclidean distance is preserved in the Haar transformed domain and no false dismissal will occur, (2) we show that Haar transform can outperform DFT through experiments, (3) a new similarity model is suggested to accommodate vertical shift of time series, and (4) a two-phase method is proposed for efficient n-nearest neighbor query in time series databases.","PeriodicalId":236128,"journal":{"name":"Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1210","resultStr":"{\"title\":\"Efficient time series matching by wavelets\",\"authors\":\"K. Chan, A. Fu\",\"doi\":\"10.1109/ICDE.1999.754915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series stored as feature vectors can be indexed by multidimensional index trees like R-Trees for fast retrieval. Due to the dimensionality curse problem, transformations are applied to time series to reduce the number of dimensions of the feature vectors. Different transformations like Discrete Fourier Transform (DFT) Discrete Wavelet Transform (DWT), Karhunen-Loeve (KL) transform or Singular Value Decomposition (SVD) can be applied. While the use of DFT and K-L transform or SVD have been studied on the literature, to our knowledge, there is no in-depth study on the application of DWT. In this paper we propose to use Haar Wavelet Transform for time series indexing. The major contributions are: (1) we show that Euclidean distance is preserved in the Haar transformed domain and no false dismissal will occur, (2) we show that Haar transform can outperform DFT through experiments, (3) a new similarity model is suggested to accommodate vertical shift of time series, and (4) a two-phase method is proposed for efficient n-nearest neighbor query in time series databases.\",\"PeriodicalId\":236128,\"journal\":{\"name\":\"Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1210\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.1999.754915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1999.754915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1210

摘要

以特征向量形式存储的时间序列可以通过多维索引树(如R-Trees)进行索引,以便快速检索。由于维数诅咒问题,对时间序列进行变换以减少特征向量的维数。可以应用不同的变换,如离散傅立叶变换(DFT)、离散小波变换(DWT)、Karhunen-Loeve变换(KL)或奇异值分解(SVD)。虽然已有文献对DFT和K-L变换或SVD的使用进行了研究,但据我们所知,对DWT的应用还没有深入的研究。本文提出利用Haar小波变换进行时间序列索引。主要贡献有:(1)在Haar变换域中欧氏距离保持不变,不会发生误辞退;(2)通过实验证明Haar变换优于DFT;(3)提出了一种新的相似度模型来适应时间序列的垂直位移;(4)提出了一种两相方法来实现时间序列数据库中n近邻的高效查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient time series matching by wavelets
Time series stored as feature vectors can be indexed by multidimensional index trees like R-Trees for fast retrieval. Due to the dimensionality curse problem, transformations are applied to time series to reduce the number of dimensions of the feature vectors. Different transformations like Discrete Fourier Transform (DFT) Discrete Wavelet Transform (DWT), Karhunen-Loeve (KL) transform or Singular Value Decomposition (SVD) can be applied. While the use of DFT and K-L transform or SVD have been studied on the literature, to our knowledge, there is no in-depth study on the application of DWT. In this paper we propose to use Haar Wavelet Transform for time series indexing. The major contributions are: (1) we show that Euclidean distance is preserved in the Haar transformed domain and no false dismissal will occur, (2) we show that Haar transform can outperform DFT through experiments, (3) a new similarity model is suggested to accommodate vertical shift of time series, and (4) a two-phase method is proposed for efficient n-nearest neighbor query in time series databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信