自动学习形状规格

He Zhu, G. Petri, S. Jagannathan
{"title":"自动学习形状规格","authors":"He Zhu, G. Petri, S. Jagannathan","doi":"10.1145/2908080.2908125","DOIUrl":null,"url":null,"abstract":"This paper presents a novel automated procedure for discovering expressive shape specifications for sophisticated functional data structures. Our approach extracts potential shape predicates based on the definition of constructors of arbitrary user-defined inductive data types, and combines these predicates within an expressive first-order specification language using a lightweight data-driven learning procedure. Notably, this technique requires no programmer annotations, and is equipped with a type-based decision procedure to verify the correctness of discovered specifications. Experimental results indicate that our implementation is both efficient and effective, capable of automatically synthesizing sophisticated shape specifications over a range of complex data types, going well beyond the scope of existing solutions.","PeriodicalId":178839,"journal":{"name":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Automatically learning shape specifications\",\"authors\":\"He Zhu, G. Petri, S. Jagannathan\",\"doi\":\"10.1145/2908080.2908125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel automated procedure for discovering expressive shape specifications for sophisticated functional data structures. Our approach extracts potential shape predicates based on the definition of constructors of arbitrary user-defined inductive data types, and combines these predicates within an expressive first-order specification language using a lightweight data-driven learning procedure. Notably, this technique requires no programmer annotations, and is equipped with a type-based decision procedure to verify the correctness of discovered specifications. Experimental results indicate that our implementation is both efficient and effective, capable of automatically synthesizing sophisticated shape specifications over a range of complex data types, going well beyond the scope of existing solutions.\",\"PeriodicalId\":178839,\"journal\":{\"name\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2908080.2908125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2908080.2908125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文提出了一种新的自动化过程,用于发现复杂功能数据结构的表达形状规范。我们的方法基于任意用户定义归纳数据类型的构造函数的定义提取潜在的形状谓词,并使用轻量级数据驱动的学习过程将这些谓词组合在具有表现力的一阶规范语言中。值得注意的是,该技术不需要程序员注释,并且配备了基于类型的决策过程来验证所发现规范的正确性。实验结果表明,我们的实现既高效又有效,能够在一系列复杂数据类型上自动合成复杂的形状规范,远远超出了现有解决方案的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatically learning shape specifications
This paper presents a novel automated procedure for discovering expressive shape specifications for sophisticated functional data structures. Our approach extracts potential shape predicates based on the definition of constructors of arbitrary user-defined inductive data types, and combines these predicates within an expressive first-order specification language using a lightweight data-driven learning procedure. Notably, this technique requires no programmer annotations, and is equipped with a type-based decision procedure to verify the correctness of discovered specifications. Experimental results indicate that our implementation is both efficient and effective, capable of automatically synthesizing sophisticated shape specifications over a range of complex data types, going well beyond the scope of existing solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信