{"title":"自动学习形状规格","authors":"He Zhu, G. Petri, S. Jagannathan","doi":"10.1145/2908080.2908125","DOIUrl":null,"url":null,"abstract":"This paper presents a novel automated procedure for discovering expressive shape specifications for sophisticated functional data structures. Our approach extracts potential shape predicates based on the definition of constructors of arbitrary user-defined inductive data types, and combines these predicates within an expressive first-order specification language using a lightweight data-driven learning procedure. Notably, this technique requires no programmer annotations, and is equipped with a type-based decision procedure to verify the correctness of discovered specifications. Experimental results indicate that our implementation is both efficient and effective, capable of automatically synthesizing sophisticated shape specifications over a range of complex data types, going well beyond the scope of existing solutions.","PeriodicalId":178839,"journal":{"name":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Automatically learning shape specifications\",\"authors\":\"He Zhu, G. Petri, S. Jagannathan\",\"doi\":\"10.1145/2908080.2908125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel automated procedure for discovering expressive shape specifications for sophisticated functional data structures. Our approach extracts potential shape predicates based on the definition of constructors of arbitrary user-defined inductive data types, and combines these predicates within an expressive first-order specification language using a lightweight data-driven learning procedure. Notably, this technique requires no programmer annotations, and is equipped with a type-based decision procedure to verify the correctness of discovered specifications. Experimental results indicate that our implementation is both efficient and effective, capable of automatically synthesizing sophisticated shape specifications over a range of complex data types, going well beyond the scope of existing solutions.\",\"PeriodicalId\":178839,\"journal\":{\"name\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2908080.2908125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2908080.2908125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a novel automated procedure for discovering expressive shape specifications for sophisticated functional data structures. Our approach extracts potential shape predicates based on the definition of constructors of arbitrary user-defined inductive data types, and combines these predicates within an expressive first-order specification language using a lightweight data-driven learning procedure. Notably, this technique requires no programmer annotations, and is equipped with a type-based decision procedure to verify the correctness of discovered specifications. Experimental results indicate that our implementation is both efficient and effective, capable of automatically synthesizing sophisticated shape specifications over a range of complex data types, going well beyond the scope of existing solutions.