共现网络分析(CNA)作为一种替代工具,以评估基于调查的研究模式在酒店和旅游研究

M. Koseoglu, J. Parnell, H. Arici
{"title":"共现网络分析(CNA)作为一种替代工具,以评估基于调查的研究模式在酒店和旅游研究","authors":"M. Koseoglu, J. Parnell, H. Arici","doi":"10.5038/2640-6489.7.1.1179","DOIUrl":null,"url":null,"abstract":"Hospitality and tourism (H&T) researchers employ structural equation modeling (SEM) and other multivariate techniques to test their models with survey data. These approaches assess relationships among constructs and model fit, but they do not highlight the most influential survey items or links among them. Other challenges include method-specific requirements for appropriate data, the best indices to identify optimal models, minimum sample sizes, missing data, and interpreting the results from complex models. Co-occurrence network analysis (CNA) can mitigate these limitations. This study validates CNA in the H&T field with a survey dataset that assesses market strategy, nonmarket strategy (NMS), organizational values, and firm performance. CNA is proposed as a complement to existing multivariate approaches for assessing survey data. The assessment includes nine steps: (1) identify the research purpose and hypothesis, (2) determine the hypothesis-related items to measure, (3) determine the sample, (4) administer the survey, (5) determine the analysis method, (6) test the hypotheses, (7) prepare survey inputs for CNA, (8) employ CNA, and (9) visualize and interpret results. This pathway demonstrates how future research can apply and address CNA's advantages and limitations.","PeriodicalId":448415,"journal":{"name":"Journal of Global Business Insights","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Co-occurrence network analysis (CNA) as an alternative tool to assess survey-based research models in hospitality and tourism research\",\"authors\":\"M. Koseoglu, J. Parnell, H. Arici\",\"doi\":\"10.5038/2640-6489.7.1.1179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hospitality and tourism (H&T) researchers employ structural equation modeling (SEM) and other multivariate techniques to test their models with survey data. These approaches assess relationships among constructs and model fit, but they do not highlight the most influential survey items or links among them. Other challenges include method-specific requirements for appropriate data, the best indices to identify optimal models, minimum sample sizes, missing data, and interpreting the results from complex models. Co-occurrence network analysis (CNA) can mitigate these limitations. This study validates CNA in the H&T field with a survey dataset that assesses market strategy, nonmarket strategy (NMS), organizational values, and firm performance. CNA is proposed as a complement to existing multivariate approaches for assessing survey data. The assessment includes nine steps: (1) identify the research purpose and hypothesis, (2) determine the hypothesis-related items to measure, (3) determine the sample, (4) administer the survey, (5) determine the analysis method, (6) test the hypotheses, (7) prepare survey inputs for CNA, (8) employ CNA, and (9) visualize and interpret results. This pathway demonstrates how future research can apply and address CNA's advantages and limitations.\",\"PeriodicalId\":448415,\"journal\":{\"name\":\"Journal of Global Business Insights\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Business Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5038/2640-6489.7.1.1179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Business Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5038/2640-6489.7.1.1179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

酒店和旅游(H&T)研究人员采用结构方程模型(SEM)和其他多变量技术来测试他们的模型与调查数据。这些方法评估结构和模型拟合之间的关系,但它们没有突出显示最具影响力的调查项目或它们之间的联系。其他挑战包括对适当数据的特定方法要求、确定最佳模型的最佳指数、最小样本量、缺失数据以及解释复杂模型的结果。共现网络分析(CNA)可以缓解这些限制。本研究通过评估市场战略、非市场战略(NMS)、组织价值和企业绩效的调查数据集,验证了H&T领域的CNA。CNA被提议作为评估调查数据的现有多变量方法的补充。评估包括九个步骤:(1)确定研究目的和假设,(2)确定要测量的假设相关项目,(3)确定样本,(4)管理调查,(5)确定分析方法,(6)检验假设,(7)为CNA准备调查输入,(8)使用CNA,(9)可视化和解释结果。这一途径展示了未来的研究如何应用和解决CNA的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-occurrence network analysis (CNA) as an alternative tool to assess survey-based research models in hospitality and tourism research
Hospitality and tourism (H&T) researchers employ structural equation modeling (SEM) and other multivariate techniques to test their models with survey data. These approaches assess relationships among constructs and model fit, but they do not highlight the most influential survey items or links among them. Other challenges include method-specific requirements for appropriate data, the best indices to identify optimal models, minimum sample sizes, missing data, and interpreting the results from complex models. Co-occurrence network analysis (CNA) can mitigate these limitations. This study validates CNA in the H&T field with a survey dataset that assesses market strategy, nonmarket strategy (NMS), organizational values, and firm performance. CNA is proposed as a complement to existing multivariate approaches for assessing survey data. The assessment includes nine steps: (1) identify the research purpose and hypothesis, (2) determine the hypothesis-related items to measure, (3) determine the sample, (4) administer the survey, (5) determine the analysis method, (6) test the hypotheses, (7) prepare survey inputs for CNA, (8) employ CNA, and (9) visualize and interpret results. This pathway demonstrates how future research can apply and address CNA's advantages and limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信