使用监督学习进行文件伪造检测的打印机识别

Sarah Elkasrawi, F. Shafait
{"title":"使用监督学习进行文件伪造检测的打印机识别","authors":"Sarah Elkasrawi, F. Shafait","doi":"10.1109/DAS.2014.48","DOIUrl":null,"url":null,"abstract":"Identifying the source printer of a document is important in forgery detection. The larger the number of documents to be investigated for forgery, the less time-efficient manual examination becomes. Assuming the document in question was scanned, the accuracy of automatic forgery detection depends on the scanning resolution. Low (100-200 dpi) and common (300-400 dpi) resolution scans have less distinctive features than high-end scanner resolution, whereas the former is more widespread in offices. In this paper, we propose a method to automatically identify source printers using common-resolution scans (400 dpi). Our method depends on distinctive noise produced by printers. Independent of the document content or size, each printer produces noise depending on its printing technique, brand and slight differences due to manufacturing imperfections. Experiments were carried out on a set of 400 documents of similar structure printed using 20 different printers. The documents were scanned at 400 dpi using the same scanner. Assuming constant settings of the printer, the overall accuracy of the classification was 76.75%.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Printer Identification Using Supervised Learning for Document Forgery Detection\",\"authors\":\"Sarah Elkasrawi, F. Shafait\",\"doi\":\"10.1109/DAS.2014.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying the source printer of a document is important in forgery detection. The larger the number of documents to be investigated for forgery, the less time-efficient manual examination becomes. Assuming the document in question was scanned, the accuracy of automatic forgery detection depends on the scanning resolution. Low (100-200 dpi) and common (300-400 dpi) resolution scans have less distinctive features than high-end scanner resolution, whereas the former is more widespread in offices. In this paper, we propose a method to automatically identify source printers using common-resolution scans (400 dpi). Our method depends on distinctive noise produced by printers. Independent of the document content or size, each printer produces noise depending on its printing technique, brand and slight differences due to manufacturing imperfections. Experiments were carried out on a set of 400 documents of similar structure printed using 20 different printers. The documents were scanned at 400 dpi using the same scanner. Assuming constant settings of the printer, the overall accuracy of the classification was 76.75%.\",\"PeriodicalId\":220495,\"journal\":{\"name\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAS.2014.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

识别文档的源打印机在伪造检测中是很重要的。要调查的伪造文件数量越多,人工检查的时间效率就越低。假设所讨论的文档已被扫描,那么自动伪造检测的准确性取决于扫描分辨率。低分辨率(100-200 dpi)和普通分辨率(300-400 dpi)的扫描没有高端扫描仪分辨率那么明显,而前者在办公室更普遍。在本文中,我们提出了一种使用普通分辨率扫描(400 dpi)自动识别源打印机的方法。我们的方法依赖于打印机产生的独特噪音。与文件内容或大小无关,每台打印机都会根据其打印技术、品牌和由于制造缺陷而产生的细微差异产生噪音。实验用20种不同的打印机打印了400份类似结构的文件。使用同一台扫描仪以400 dpi扫描文件。假设打印机设置不变,分类的总体准确率为76.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Printer Identification Using Supervised Learning for Document Forgery Detection
Identifying the source printer of a document is important in forgery detection. The larger the number of documents to be investigated for forgery, the less time-efficient manual examination becomes. Assuming the document in question was scanned, the accuracy of automatic forgery detection depends on the scanning resolution. Low (100-200 dpi) and common (300-400 dpi) resolution scans have less distinctive features than high-end scanner resolution, whereas the former is more widespread in offices. In this paper, we propose a method to automatically identify source printers using common-resolution scans (400 dpi). Our method depends on distinctive noise produced by printers. Independent of the document content or size, each printer produces noise depending on its printing technique, brand and slight differences due to manufacturing imperfections. Experiments were carried out on a set of 400 documents of similar structure printed using 20 different printers. The documents were scanned at 400 dpi using the same scanner. Assuming constant settings of the printer, the overall accuracy of the classification was 76.75%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信