Yi-Wen Chen, C. Shih, Chen-Yang Cheng, Yu-Cheng Lin
{"title":"用差分进化算法求解颅骨修复假体建模","authors":"Yi-Wen Chen, C. Shih, Chen-Yang Cheng, Yu-Cheng Lin","doi":"10.1166/jmihi.2021.3884","DOIUrl":null,"url":null,"abstract":"Cranial defects can result in compromised physical protection for the brain and a how risky the brain infection is. Cranioplasty is commonly performed by doing the bone graft onto the deficient area or areas and/or using the metal to support them for restoring the cranial cavity integrity\n and maintain the physiological intracranial pressure stability. Nowadays, the suitable shape of skull prosthesis can be created and operated precisely and efficiently during cranioplasty process, because the technological development of additive manufacturing or 3D printing. Additive manufacturing\n has great potential in regard to addressing irregular cranial defects because it can be used to create customized shapes rapidly. However, an unsuitable cranial prosthesis that made from synthetic polymer or a metal implantation will cause a serious infections, and required additional surgery.\n This paper proposes a geometric model of skull defects by using the superellipse and Differential Evolution (DE). The defects of skill bones in each tomography slice can be modeled by superellipse. The DE optimizes the parameters of superellipse to emulate and compensate the suitable curvature.\n In a rapid 2D image process and 3D cranial model construction system, the clinical surgeons’ ability is determining, processing, and implanting a customized prosthesis for patients just in a short time in surgery and with maximum surgical quality, especially in emergency cases.","PeriodicalId":393031,"journal":{"name":"J. Medical Imaging Health Informatics","volume":"86 (2016) 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the Prosthesis Modeling for Skull Repair Through Differential Evolution Algorithm\",\"authors\":\"Yi-Wen Chen, C. Shih, Chen-Yang Cheng, Yu-Cheng Lin\",\"doi\":\"10.1166/jmihi.2021.3884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cranial defects can result in compromised physical protection for the brain and a how risky the brain infection is. Cranioplasty is commonly performed by doing the bone graft onto the deficient area or areas and/or using the metal to support them for restoring the cranial cavity integrity\\n and maintain the physiological intracranial pressure stability. Nowadays, the suitable shape of skull prosthesis can be created and operated precisely and efficiently during cranioplasty process, because the technological development of additive manufacturing or 3D printing. Additive manufacturing\\n has great potential in regard to addressing irregular cranial defects because it can be used to create customized shapes rapidly. However, an unsuitable cranial prosthesis that made from synthetic polymer or a metal implantation will cause a serious infections, and required additional surgery.\\n This paper proposes a geometric model of skull defects by using the superellipse and Differential Evolution (DE). The defects of skill bones in each tomography slice can be modeled by superellipse. The DE optimizes the parameters of superellipse to emulate and compensate the suitable curvature.\\n In a rapid 2D image process and 3D cranial model construction system, the clinical surgeons’ ability is determining, processing, and implanting a customized prosthesis for patients just in a short time in surgery and with maximum surgical quality, especially in emergency cases.\",\"PeriodicalId\":393031,\"journal\":{\"name\":\"J. Medical Imaging Health Informatics\",\"volume\":\"86 (2016) 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Medical Imaging Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jmihi.2021.3884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Imaging Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2021.3884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving the Prosthesis Modeling for Skull Repair Through Differential Evolution Algorithm
Cranial defects can result in compromised physical protection for the brain and a how risky the brain infection is. Cranioplasty is commonly performed by doing the bone graft onto the deficient area or areas and/or using the metal to support them for restoring the cranial cavity integrity
and maintain the physiological intracranial pressure stability. Nowadays, the suitable shape of skull prosthesis can be created and operated precisely and efficiently during cranioplasty process, because the technological development of additive manufacturing or 3D printing. Additive manufacturing
has great potential in regard to addressing irregular cranial defects because it can be used to create customized shapes rapidly. However, an unsuitable cranial prosthesis that made from synthetic polymer or a metal implantation will cause a serious infections, and required additional surgery.
This paper proposes a geometric model of skull defects by using the superellipse and Differential Evolution (DE). The defects of skill bones in each tomography slice can be modeled by superellipse. The DE optimizes the parameters of superellipse to emulate and compensate the suitable curvature.
In a rapid 2D image process and 3D cranial model construction system, the clinical surgeons’ ability is determining, processing, and implanting a customized prosthesis for patients just in a short time in surgery and with maximum surgical quality, especially in emergency cases.