马尔可夫随机场模型下无线网络的似然比传播与一致性

F. Penna, R. Garello, M. Spirito
{"title":"马尔可夫随机场模型下无线网络的似然比传播与一致性","authors":"F. Penna, R. Garello, M. Spirito","doi":"10.1109/GLOCOMW.2010.5700139","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of distributed Bayesian hypothesis testing in wireless networks where correlations among nodes are modeled as exponential Markov Random Fields (MRF). Applying distributed Belief Propagation (BP), we first derive message and belief update rules for the above model expressed under a likelihood ratio formulation. Then we analyze the properties of BP when the MRF correlation values tend to infinity, and we show that in this limit BP behaves as a consensus scheme. As a result, both problems of heterogeneous hypothesis testing (i.e., MRF estimation) and homogeneous hypothesis testing (i.e., consensus building) can be seen under a unified framework.","PeriodicalId":232205,"journal":{"name":"2010 IEEE Globecom Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Likelihood-ratio propagation and consensus in wireless networks with Markov Random Field models\",\"authors\":\"F. Penna, R. Garello, M. Spirito\",\"doi\":\"10.1109/GLOCOMW.2010.5700139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the problem of distributed Bayesian hypothesis testing in wireless networks where correlations among nodes are modeled as exponential Markov Random Fields (MRF). Applying distributed Belief Propagation (BP), we first derive message and belief update rules for the above model expressed under a likelihood ratio formulation. Then we analyze the properties of BP when the MRF correlation values tend to infinity, and we show that in this limit BP behaves as a consensus scheme. As a result, both problems of heterogeneous hypothesis testing (i.e., MRF estimation) and homogeneous hypothesis testing (i.e., consensus building) can be seen under a unified framework.\",\"PeriodicalId\":232205,\"journal\":{\"name\":\"2010 IEEE Globecom Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Globecom Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2010.5700139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Globecom Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2010.5700139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们解决了无线网络中的分布式贝叶斯假设检验问题,其中节点之间的相关性被建模为指数马尔可夫随机场(MRF)。首先利用分布式信念传播(BP)方法,推导出基于似然比公式的信息更新规则和信念更新规则。然后分析了MRF相关值趋于无穷大时BP的性质,证明了在此极限下BP表现为一致方案。因此,异质假设检验(即MRF估计)和同质假设检验(即共识建立)的问题都可以在一个统一的框架下看到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Likelihood-ratio propagation and consensus in wireless networks with Markov Random Field models
In this paper we address the problem of distributed Bayesian hypothesis testing in wireless networks where correlations among nodes are modeled as exponential Markov Random Fields (MRF). Applying distributed Belief Propagation (BP), we first derive message and belief update rules for the above model expressed under a likelihood ratio formulation. Then we analyze the properties of BP when the MRF correlation values tend to infinity, and we show that in this limit BP behaves as a consensus scheme. As a result, both problems of heterogeneous hypothesis testing (i.e., MRF estimation) and homogeneous hypothesis testing (i.e., consensus building) can be seen under a unified framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信