Allen Starke, D. Kumar, M. Ford, J. Mcnair, A. Bell
{"title":"基于时间触发以太网的异构流量网络确定性测试平台研究","authors":"Allen Starke, D. Kumar, M. Ford, J. Mcnair, A. Bell","doi":"10.1109/MILCOM.2017.8170786","DOIUrl":null,"url":null,"abstract":"Future tactical communications involves high data rate best effort traffic working alongside real-time traffic for time-critical applications with hard deadlines. Unavailable bandwidth and/or untimely responses may lead to undesired or even catastrophic outcomes. Ethernet-based communication systems are one of the major tactical network standards due to the higher bandwidth, better utilization, and ability to handle heterogeneous traffic. However, Ethernet suffers from inconsistent performance for jitter, latency and bandwidth under heavy loads. The emerging Time-Triggered Ethernet (TTE) solutions promise deterministic Ethernet performance, fault-tolerant topologies and real-time guarantees for critical traffic. In this paper we study the TTE protocol and build a TTTech TTE test bed to evaluate its performance. Through experimental study, the TTE protocol was observed to provide consistent high data rates for best effort messages, determinism with very low jitter for time-triggered messages, and fault-tolerance for minimal packet loss using redundant networking topologies. In addition, challenges were observed that presented a trade-off between the integration cycle and the synchronization overhead. It is concluded that TTE is a capable solution to support heterogeneous traffic in time-critical applications, such as aerospace systems (eg. airplanes, spacecraft, etc.), ground-based vehicles (eg. trains, buses, cars, etc), and cyber-physical systems (eg. smart-grids, IoT, etc.).","PeriodicalId":113767,"journal":{"name":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A test bed study of network determinism for heterogeneous traffic using time-triggered ethernet\",\"authors\":\"Allen Starke, D. Kumar, M. Ford, J. Mcnair, A. Bell\",\"doi\":\"10.1109/MILCOM.2017.8170786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future tactical communications involves high data rate best effort traffic working alongside real-time traffic for time-critical applications with hard deadlines. Unavailable bandwidth and/or untimely responses may lead to undesired or even catastrophic outcomes. Ethernet-based communication systems are one of the major tactical network standards due to the higher bandwidth, better utilization, and ability to handle heterogeneous traffic. However, Ethernet suffers from inconsistent performance for jitter, latency and bandwidth under heavy loads. The emerging Time-Triggered Ethernet (TTE) solutions promise deterministic Ethernet performance, fault-tolerant topologies and real-time guarantees for critical traffic. In this paper we study the TTE protocol and build a TTTech TTE test bed to evaluate its performance. Through experimental study, the TTE protocol was observed to provide consistent high data rates for best effort messages, determinism with very low jitter for time-triggered messages, and fault-tolerance for minimal packet loss using redundant networking topologies. In addition, challenges were observed that presented a trade-off between the integration cycle and the synchronization overhead. It is concluded that TTE is a capable solution to support heterogeneous traffic in time-critical applications, such as aerospace systems (eg. airplanes, spacecraft, etc.), ground-based vehicles (eg. trains, buses, cars, etc), and cyber-physical systems (eg. smart-grids, IoT, etc.).\",\"PeriodicalId\":113767,\"journal\":{\"name\":\"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM.2017.8170786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2017.8170786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A test bed study of network determinism for heterogeneous traffic using time-triggered ethernet
Future tactical communications involves high data rate best effort traffic working alongside real-time traffic for time-critical applications with hard deadlines. Unavailable bandwidth and/or untimely responses may lead to undesired or even catastrophic outcomes. Ethernet-based communication systems are one of the major tactical network standards due to the higher bandwidth, better utilization, and ability to handle heterogeneous traffic. However, Ethernet suffers from inconsistent performance for jitter, latency and bandwidth under heavy loads. The emerging Time-Triggered Ethernet (TTE) solutions promise deterministic Ethernet performance, fault-tolerant topologies and real-time guarantees for critical traffic. In this paper we study the TTE protocol and build a TTTech TTE test bed to evaluate its performance. Through experimental study, the TTE protocol was observed to provide consistent high data rates for best effort messages, determinism with very low jitter for time-triggered messages, and fault-tolerance for minimal packet loss using redundant networking topologies. In addition, challenges were observed that presented a trade-off between the integration cycle and the synchronization overhead. It is concluded that TTE is a capable solution to support heterogeneous traffic in time-critical applications, such as aerospace systems (eg. airplanes, spacecraft, etc.), ground-based vehicles (eg. trains, buses, cars, etc), and cyber-physical systems (eg. smart-grids, IoT, etc.).