基于聚类的学生描述模型

S. Milinkovic, V. Vujovic, Zorana Štaka, M. Vuković
{"title":"基于聚类的学生描述模型","authors":"S. Milinkovic, V. Vujovic, Zorana Štaka, M. Vuković","doi":"10.1109/INFOTEH57020.2023.10094114","DOIUrl":null,"url":null,"abstract":"When students enroll at universities, various datasets can be available to managers and teachers. Clustering techniques can be applied in order to divide the instances within those datasets into natural groups. In this paper, one clustering-based approach combined with attribute selection methods for identifying specific input dataset variables meaningful for the disjunction of distinct students' profiles has been proposed. Also, an analysis of the descriptive students' model obtained by the proposed methodology is performed.","PeriodicalId":287923,"journal":{"name":"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"85 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering-Based Students' Descriptive Model\",\"authors\":\"S. Milinkovic, V. Vujovic, Zorana Štaka, M. Vuković\",\"doi\":\"10.1109/INFOTEH57020.2023.10094114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When students enroll at universities, various datasets can be available to managers and teachers. Clustering techniques can be applied in order to divide the instances within those datasets into natural groups. In this paper, one clustering-based approach combined with attribute selection methods for identifying specific input dataset variables meaningful for the disjunction of distinct students' profiles has been proposed. Also, an analysis of the descriptive students' model obtained by the proposed methodology is performed.\",\"PeriodicalId\":287923,\"journal\":{\"name\":\"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"volume\":\"85 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTEH57020.2023.10094114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH57020.2023.10094114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当学生在大学注册时,管理人员和教师可以使用各种数据集。可以应用聚类技术将这些数据集中的实例划分为自然组。本文提出了一种基于聚类的方法,结合属性选择方法来识别对不同学生档案的分离有意义的特定输入数据集变量。此外,对所提出的方法获得的描述性学生模型进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering-Based Students' Descriptive Model
When students enroll at universities, various datasets can be available to managers and teachers. Clustering techniques can be applied in order to divide the instances within those datasets into natural groups. In this paper, one clustering-based approach combined with attribute selection methods for identifying specific input dataset variables meaningful for the disjunction of distinct students' profiles has been proposed. Also, an analysis of the descriptive students' model obtained by the proposed methodology is performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信